Suppr超能文献

人类肠道微生物群的关联规则挖掘

Association rule mining of the human gut microbiome.

作者信息

Zhang Yiyan, Ke Shanlin, Wang Xu-Wen, Sun Yizhou, Weiss Scott T, Liu Yang-Yu

机构信息

Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA.

出版信息

Sci China Life Sci. 2025 Jun 23. doi: 10.1007/s11427-024-2865-1.

Abstract

The human gut carries a vast and diverse microbial community that is essential for human health. Understanding the structure of this complex community is a crucial step toward comprehending human-microbiome interactions. Traditional co-occurrence and correlation analyses typically focus on pairwise relationships and ignore higher-order relationships. Association rule mining (ARM) is a well-developed technique in data mining and has been applied to human microbiome data to identify higher-order relationships. Yet, existing attempts suffer from small sample sizes and low taxonomic resolution. We developed an advanced ARM framework and systematically investigated the interactions between microbial species using a public large-scale uniformly processed human microbiome data from the curatedMetagenomicData (CMD) together with ARM. First, we inferred association rules in the gut microbiome samples of healthy individuals (n=2,815) in CMD. Then we compared those rules with those inferred from the individuals with different diseases: inflammatory bowel disease (IBD, n=768), colorectal cancer (CRC, n=368), impaired glucose tolerance (IGT, n=199), and type 2 diabetes (T2D, n=164). Finally, we demonstrated that ARM is an efficient feature selection tool that can improve the performance of microbiome-based disease classification. Together, this study illustrates the higher-order microbial relationships in the human gut microbiome and highlights the critical importance of incorporating association rules in microbiome-based disease classification.

摘要

人类肠道中携带着一个庞大且多样的微生物群落,这对人类健康至关重要。了解这个复杂群落的结构是理解人类与微生物组相互作用的关键一步。传统的共现和相关性分析通常聚焦于成对关系,而忽略了高阶关系。关联规则挖掘(ARM)是数据挖掘中一项成熟的技术,已被应用于人类微生物组数据以识别高阶关系。然而,现有的尝试存在样本量小和分类分辨率低的问题。我们开发了一个先进的ARM框架,并使用来自精心整理的宏基因组数据(CMD)的公开大规模统一处理的人类微生物组数据,结合ARM系统地研究了微生物物种之间的相互作用。首先,我们在CMD中健康个体(n = 2815)的肠道微生物组样本中推断关联规则。然后我们将这些规则与从患有不同疾病的个体中推断出的规则进行比较:炎症性肠病(IBD,n = 768)、结直肠癌(CRC,n = 368)、糖耐量受损(IGT,n = 199)和2型糖尿病(T2D,n = 164)。最后,我们证明了ARM是一种有效的特征选择工具,可以提高基于微生物组的疾病分类性能。总之,这项研究阐明了人类肠道微生物组中的高阶微生物关系,并突出了在基于微生物组的疾病分类中纳入关联规则的至关重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验