Suppr超能文献

具有捷径的深层 3D 卷积编码网络,用于多尺度特征集成,应用于多发性硬化病变分割。

Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1229-1239. doi: 10.1109/TMI.2016.2528821. Epub 2016 Feb 11.

Abstract

We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.

摘要

我们提出了一种新的基于带有快捷连接的深度 3D 卷积编码器网络的分割方法,并将其应用于磁共振图像中多发性硬化(MS)病变的分割。我们的模型是一个由两个相互连接的路径组成的神经网络,一个是卷积路径,它学习越来越抽象和高级的图像特征,另一个是反卷积路径,它在体素级别上预测最终的分割。特征提取和预测路径的联合训练允许自动学习不同尺度的特征,这些特征针对任何给定的图像类型和分割任务组合进行了优化,以实现准确性。此外,两个路径之间的快捷连接允许整合高低层次的特征,从而能够分割各种大小的病变。我们在两个公开的数据集(MICCAI 2008 和 ISBI 2015 挑战赛)上评估了我们的方法,结果表明,即使在训练数据相对较少的情况下,我们的方法也能与排名最高的最先进方法相媲美。此外,我们还在一个来自 MS 临床试验的大型数据集上,将我们的方法与五种免费提供且广泛使用的 MS 病变分割方法(EMS、LST-LPA、LST-LGA、Lesion-TOADS 和 SLS)进行了比较。结果表明,我们的方法在广泛的病变大小范围内始终优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验