Suppr超能文献

利用自动分割深度学习模型预测外周I期肺腺癌肿瘤在气腔内的扩散。

Prediction of tumor spread through air spaces with an automatic segmentation deep learning model in peripheral stage I lung adenocarcinoma.

作者信息

Liu Cong, Wang Yu-Feng, Gong Ping, Xue Xiu-Qing, Zhao Hong-Ying, Qian Hui, Jia Chao, Li Xiao-Feng

机构信息

Department of Minimally Invasive Oncology, Xuzhou New Health Geriatric Hospital, Xuzhou, People's Republic of China.

Departments of Nuclear Medicine, The Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China.

出版信息

Respir Res. 2025 Mar 8;26(1):94. doi: 10.1186/s12931-025-03174-0.

Abstract

BACKGROUND

To evaluate the clinical applicability of deep learning (DL) models based on automatic segmentation in preoperatively predicting tumor spread through air spaces (STAS) in peripheral stage I lung adenocarcinoma (LUAD).

METHODS

This retrospective study analyzed data from patients who underwent surgical treatment for lung tumors from January 2022 to December 2023. An external validation set was introduced to assess the model's generalizability. The study utilized conventional radiomic features and DL models for comparison. ROI segmentation was performed using the VNet architecture, and DL models were developed with transfer learning and optimization techniques. We assessed the diagnostic accuracy of our models via calibration curves, decision curve analysis, and ROC curves.

RESULTS

The DL model based on automatic segmentation achieved an AUC of 0.880 (95% CI 0.780-0.979), outperforming the conventional radiomics model with an AUC of 0.833 (95% CI 0.707-0.960). The DL model demonstrated superior performance in both internal validation and external testing cohorts. Calibration curves, decision curve analysis, and ROC curves confirmed the enhanced diagnostic accuracy and clinical utility of the DL approach.

CONCLUSION

The DL model based on automatic segmentation technology shows significant promise in preoperatively predicting STAS in peripheral stage I LUAD, surpassing traditional radiomics models in diagnostic accuracy and clinical applicability. Clinical trial number The clinical trial was registered on April 22, 2024, with the registration number researchregistry10213 ( www.researchregistry.com ).

摘要

背景

评估基于自动分割的深度学习(DL)模型在术前预测外周I期肺腺癌(LUAD)中肿瘤通过气腔扩散(STAS)的临床适用性。

方法

这项回顾性研究分析了2022年1月至2023年12月接受肺部肿瘤手术治疗的患者的数据。引入外部验证集以评估模型的通用性。该研究利用传统的放射组学特征和DL模型进行比较。使用VNet架构进行感兴趣区域(ROI)分割,并采用迁移学习和优化技术开发DL模型。我们通过校准曲线、决策曲线分析和ROC曲线评估模型的诊断准确性。

结果

基于自动分割的DL模型的AUC为0.880(95%CI 0.780-0.979),优于传统放射组学模型,后者的AUC为0.833(95%CI 0.707-0.960)。DL模型在内部验证和外部测试队列中均表现出卓越性能。校准曲线、决策曲线分析和ROC曲线证实了DL方法在诊断准确性和临床实用性方面的提高。

结论

基于自动分割技术的DL模型在术前预测外周I期LUAD的STAS方面显示出巨大潜力,在诊断准确性和临床适用性方面超过了传统放射组学模型。临床试验编号 该临床试验于2024年4月22日注册,注册号为researchregistry10213(www.researchregistry.com)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f52a/11890504/3f0e8b231964/12931_2025_3174_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验