Suppr超能文献

内嗅皮层II层中细胞类型特异性的相位进动

Cell-Type Specific Phase Precession in Layer II of the Medial Entorhinal Cortex.

作者信息

Reifenstein Eric T, Ebbesen Christian L, Tang Qiusong, Brecht Michael, Schreiber Susanne, Kempter Richard

机构信息

Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and

Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.

出版信息

J Neurosci. 2016 Feb 17;36(7):2283-8. doi: 10.1523/JNEUROSCI.2986-15.2016.

Abstract

UNLABELLED

The identity of phase-precessing cells in the entorhinal cortex is unknown. Here, we used a classifier derived from cell-attached recordings to separate putative pyramidal cells and putative stellate cells recorded extracellularly in layer II of the medial entorhinal cortex in rats. Using a novel method to identify single runs as temporal periods of elevated spiking activity, we find that both cell types show phase precession but putative stellate cells show steeper slopes of phase precession and larger phase ranges. As the two classes of cells have different projection patterns, phase precession is differentially passed on to different subregions of the hippocampal formation.

SIGNIFICANCE STATEMENT

It is a great challenge for neuroscience to reveal the cellular basis of cognitive functions. One such function is the ability to learn and recollect temporal sequences of events. The representation of sequences in the brain is thought to require temporally structured activity of nerve cells. How different types of neurons generate temporally structured activity is currently unknown. In the present study, we use a computational classification procedure to separate different cell types and find that a subpopulation of cells, so-called stellate neurons, exhibits clear temporal coding. Contrary to the stellate cells, pyramidal cells show weaker temporal coding. This discovery sheds light on the cellular basis of temporal coding in the brain.

摘要

未标注

内嗅皮层中相位进动细胞的身份尚不清楚。在这里,我们使用从细胞贴附记录中衍生出的分类器,来区分在大鼠内侧内嗅皮层第II层细胞外记录到的假定锥体细胞和假定星状细胞。通过一种新颖的方法将单个序列识别为尖峰活动增强的时间段,我们发现这两种细胞类型均显示出相位进动,但假定星状细胞显示出更陡峭的相位进动斜率和更大的相位范围。由于这两类细胞具有不同的投射模式,相位进动会以不同方式传递到海马结构的不同子区域。

意义声明

揭示认知功能的细胞基础对神经科学而言是一项巨大挑战。其中一项功能是学习和回忆事件时间序列的能力。大脑中序列的表征被认为需要神经细胞的时间结构化活动。目前尚不清楚不同类型的神经元如何产生时间结构化活动。在本研究中,我们使用一种计算分类程序来区分不同的细胞类型,发现一类细胞亚群,即所谓的星状神经元,表现出清晰的时间编码。与星状细胞相反,锥体细胞显示出较弱的时间编码。这一发现揭示了大脑中时间编码的细胞基础。

相似文献

1
Cell-Type Specific Phase Precession in Layer II of the Medial Entorhinal Cortex.
J Neurosci. 2016 Feb 17;36(7):2283-8. doi: 10.1523/JNEUROSCI.2986-15.2016.
2
Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons.
Neuron. 2017 May 3;94(3):677-688.e6. doi: 10.1016/j.neuron.2017.04.003. Epub 2017 Apr 20.
3
Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse.
Neuroscience. 2010 Sep 29;170(1):156-65. doi: 10.1016/j.neuroscience.2010.06.048. Epub 2010 Jul 2.
4
Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex.
Neurosci Lett. 2000 Mar 3;281(1):33-6. doi: 10.1016/s0304-3940(00)00794-1.
5
Theta phase precession of grid and place cell firing in open environments.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120532. doi: 10.1098/rstb.2012.0532. Print 2014 Feb 5.
6
Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions.
Hippocampus. 2016 Dec;26(12):1593-1607. doi: 10.1002/hipo.22659. Epub 2016 Sep 27.
7
The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.
Nat Neurosci. 2015 Aug;18(8):1123-32. doi: 10.1038/nn.4056. Epub 2015 Jun 29.
8
Functional Architecture of the Rat Parasubiculum.
J Neurosci. 2016 Feb 17;36(7):2289-301. doi: 10.1523/JNEUROSCI.3749-15.2016.
10
Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
Neuroscience. 1997 Dec;81(4):937-50. doi: 10.1016/s0306-4522(97)00263-7.

引用本文的文献

1
Theta-phase locking of single neurons during human spatial memory.
Nat Commun. 2025 Aug 11;16(1):7402. doi: 10.1038/s41467-025-62553-9.
2
Theta-phase locking of single neurons during human spatial memory.
bioRxiv. 2024 Jun 20:2024.06.20.599841. doi: 10.1101/2024.06.20.599841.
3
4
5
Quantitative optical coherence microscopy of neuron morphology in human entorhinal cortex.
Front Neurosci. 2023 Apr 21;17:1074660. doi: 10.3389/fnins.2023.1074660. eCollection 2023.
6
Intrinsic theta oscillation in the attractor network of grid cells.
iScience. 2023 Mar 14;26(4):106351. doi: 10.1016/j.isci.2023.106351. eCollection 2023 Apr 21.
8
The neural circuitry supporting successful spatial navigation despite variable movement speeds.
Neurosci Biobehav Rev. 2020 Jan;108:821-833. doi: 10.1016/j.neubiorev.2019.11.013. Epub 2019 Nov 21.
10
Hippocampal Sequences During Exploration: Mechanisms and Functions.
Front Cell Neurosci. 2019 Jun 13;13:232. doi: 10.3389/fncel.2019.00232. eCollection 2019.

本文引用的文献

1
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
2
The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.
Nat Neurosci. 2015 Aug;18(8):1123-32. doi: 10.1038/nn.4056. Epub 2015 Jun 29.
3
Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
Neuron. 2014 Dec 17;84(6):1191-7. doi: 10.1016/j.neuron.2014.11.009. Epub 2014 Dec 4.
4
Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
Nat Neurosci. 2015 Jan;18(1):121-8. doi: 10.1038/nn.3884. Epub 2014 Nov 24.
5
Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex.
Front Syst Neurosci. 2014 Oct 14;8:193. doi: 10.3389/fnsys.2014.00193. eCollection 2014.
6
Movement dependence and layer specificity of entorhinal phase precession in two-dimensional environments.
PLoS One. 2014 Jun 24;9(6):e100638. doi: 10.1371/journal.pone.0100638. eCollection 2014.
7
Modeling inheritance of phase precession in the hippocampal formation.
J Neurosci. 2014 May 28;34(22):7715-31. doi: 10.1523/JNEUROSCI.5136-13.2014.
8
Island cells control temporal association memory.
Science. 2014 Feb 21;343(6173):896-901. doi: 10.1126/science.1244634. Epub 2014 Jan 23.
9
Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex.
Science. 2014 Feb 21;343(6173):891-6. doi: 10.1126/science.1243028. Epub 2014 Jan 23.
10
Membrane potential dynamics of grid cells.
Nature. 2013 Mar 14;495(7440):199-204. doi: 10.1038/nature11973. Epub 2013 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验