Reifenstein Eric T, Ebbesen Christian L, Tang Qiusong, Brecht Michael, Schreiber Susanne, Kempter Richard
Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and
Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
J Neurosci. 2016 Feb 17;36(7):2283-8. doi: 10.1523/JNEUROSCI.2986-15.2016.
The identity of phase-precessing cells in the entorhinal cortex is unknown. Here, we used a classifier derived from cell-attached recordings to separate putative pyramidal cells and putative stellate cells recorded extracellularly in layer II of the medial entorhinal cortex in rats. Using a novel method to identify single runs as temporal periods of elevated spiking activity, we find that both cell types show phase precession but putative stellate cells show steeper slopes of phase precession and larger phase ranges. As the two classes of cells have different projection patterns, phase precession is differentially passed on to different subregions of the hippocampal formation.
It is a great challenge for neuroscience to reveal the cellular basis of cognitive functions. One such function is the ability to learn and recollect temporal sequences of events. The representation of sequences in the brain is thought to require temporally structured activity of nerve cells. How different types of neurons generate temporally structured activity is currently unknown. In the present study, we use a computational classification procedure to separate different cell types and find that a subpopulation of cells, so-called stellate neurons, exhibits clear temporal coding. Contrary to the stellate cells, pyramidal cells show weaker temporal coding. This discovery sheds light on the cellular basis of temporal coding in the brain.
内嗅皮层中相位进动细胞的身份尚不清楚。在这里,我们使用从细胞贴附记录中衍生出的分类器,来区分在大鼠内侧内嗅皮层第II层细胞外记录到的假定锥体细胞和假定星状细胞。通过一种新颖的方法将单个序列识别为尖峰活动增强的时间段,我们发现这两种细胞类型均显示出相位进动,但假定星状细胞显示出更陡峭的相位进动斜率和更大的相位范围。由于这两类细胞具有不同的投射模式,相位进动会以不同方式传递到海马结构的不同子区域。
揭示认知功能的细胞基础对神经科学而言是一项巨大挑战。其中一项功能是学习和回忆事件时间序列的能力。大脑中序列的表征被认为需要神经细胞的时间结构化活动。目前尚不清楚不同类型的神经元如何产生时间结构化活动。在本研究中,我们使用一种计算分类程序来区分不同的细胞类型,发现一类细胞亚群,即所谓的星状神经元,表现出清晰的时间编码。与星状细胞相反,锥体细胞显示出较弱的时间编码。这一发现揭示了大脑中时间编码的细胞基础。