Suppr超能文献

利用梯度磁棘轮对颗粒和细胞进行定量磁分离。

Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

作者信息

Murray Coleman, Pao Edward, Tseng Peter, Aftab Shayan, Kulkarni Rajan, Rettig Matthew, Di Carlo Dino

机构信息

Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA, 90095-1600, USA.

California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.

出版信息

Small. 2016 Apr 13;12(14):1891-9. doi: 10.1002/smll.201502120. Epub 2016 Feb 17.

Abstract

Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument.

摘要

从生物样本中提取稀有靶细胞对生命科学研究具有重要意义。传统的稀有细胞分离技术,如磁激活细胞分选,虽然可靠,但基于表面抗原表达进行的是粗略的定性分离。本文报道了一种定量磁分离技术,该技术利用高磁力磁棘轮作用于具有梯度间距的软磁微柱阵列,该系统用于基于氧化铁含量(IOC)分离和浓缩磁珠,并基于表面表达分离细胞。该系统由一个坡莫合金微柱阵列的微芯片组成,微柱的横向间距逐渐增大,以及一个用于产生循环磁场的机电装置。具有较高IOC的颗粒在较大间距的微柱阵列上分离并达到平衡。建立了一个半解析模型来预测颗粒和细胞的行为。使用该系统,基于1μm抗上皮细胞粘附分子(EpCAM)颗粒的结合量作为表达指标,对LNCaP细胞进行分离。磁棘轮细胞计数系统能够分辨出±13个结合颗粒的差异,基于EpCAM表达成功区分LNCaP和PC3细胞群,与流式细胞术分析结果相关。作为概念验证,从患者血液中分离出纯度为74%的EpCAM标记细胞,证明了该定量磁分离仪器的潜力。

相似文献

1
Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.
Small. 2016 Apr 13;12(14):1891-9. doi: 10.1002/smll.201502120. Epub 2016 Feb 17.
2
Magnetic microparticle concentration and collection using a mechatronic magnetic ratcheting system.
PLoS One. 2021 Feb 18;16(2):e0246124. doi: 10.1371/journal.pone.0246124. eCollection 2021.
4
High gradient magnetic cell separation with MACS.
Cytometry. 1990;11(2):231-8. doi: 10.1002/cyto.990110203.
5
Continuous and Quantitative Purification of T-Cell Subsets for Cell Therapy Manufacturing Using Magnetic Ratcheting Cytometry.
SLAS Technol. 2018 Aug;23(4):326-337. doi: 10.1177/2472630317748655. Epub 2017 Dec 27.
7
High gradient magnetic separation of cells on the basis of expression levels of cell surface antigens.
J Immunol Methods. 1992 Oct 2;154(2):245-52. doi: 10.1016/0022-1759(92)90198-3.
8
Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
Biosens Bioelectron. 2015 May 15;67:86-92. doi: 10.1016/j.bios.2014.07.019. Epub 2014 Jul 14.

引用本文的文献

1
Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development.
Magnetochemistry. 2024 Nov;10(11). doi: 10.3390/magnetochemistry10110081. Epub 2024 Oct 23.
2
Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix.
Micromachines (Basel). 2023 Dec 10;14(12):2224. doi: 10.3390/mi14122224.
4
Assessing Tumorigenicity in Stem Cell-Derived Therapeutic Products: A Critical Step in Safeguarding Regenerative Medicine.
Bioengineering (Basel). 2023 Jul 19;10(7):857. doi: 10.3390/bioengineering10070857.
5
Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
Ultrason Sonochem. 2023 Jun;96:106441. doi: 10.1016/j.ultsonch.2023.106441. Epub 2023 May 13.
6
Hybrid microfluidic sorting of rare cells based on high throughput inertial focusing and high accuracy acoustic manipulation.
RSC Adv. 2019 Oct 3;9(53):31186-31195. doi: 10.1039/c9ra01792e. eCollection 2019 Sep 26.
8
Magnetic microparticle concentration and collection using a mechatronic magnetic ratcheting system.
PLoS One. 2021 Feb 18;16(2):e0246124. doi: 10.1371/journal.pone.0246124. eCollection 2021.
9
Past, Present, and Future of Affinity-based Cell Separation Technologies.
Acta Biomater. 2020 Aug;112:29-51. doi: 10.1016/j.actbio.2020.05.004. Epub 2020 May 19.
10
Magnetically driven microfluidics for isolation of circulating tumor cells.
Cancer Med. 2020 Jun;9(12):4207-4231. doi: 10.1002/cam4.3077. Epub 2020 Apr 23.

本文引用的文献

1
Flow Cytometry: Impact on Early Drug Discovery.
J Biomol Screen. 2015 Jul;20(6):689-707. doi: 10.1177/1087057115578273. Epub 2015 Mar 24.
2
Lab on a chip for continuous-flow magnetic cell separation.
Lab Chip. 2015 Feb 21;15(4):959-70. doi: 10.1039/c4lc01422g.
3
Microfluidic, marker-free isolation of circulating tumor cells from blood samples.
Nat Protoc. 2014 Mar;9(3):694-710. doi: 10.1038/nprot.2014.044. Epub 2014 Feb 27.
4
Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.
PLoS One. 2014 Jan 29;9(1):e86717. doi: 10.1371/journal.pone.0086717. eCollection 2014.
5
Advances in high-throughput single-cell microtechnologies.
Curr Opin Biotechnol. 2014 Feb;25:114-23. doi: 10.1016/j.copbio.2013.09.005. Epub 2013 Dec 18.
6
Rare cell isolation and analysis in microfluidics.
Lab Chip. 2014 Feb 21;14(4):626-45. doi: 10.1039/c3lc90136j.
7
Size-selective collection of circulating tumor cells using Vortex technology.
Lab Chip. 2014 Jan 7;14(1):63-77. doi: 10.1039/c3lc50689d. Epub 2013 Sep 23.
8
Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells.
Sci Transl Med. 2013 Apr 3;5(179):179ra47. doi: 10.1126/scitranslmed.3005616.
10
Multiplexing superparamagnetic beads driven by multi-frequency ratchets.
Lab Chip. 2011 Dec 21;11(24):4214-20. doi: 10.1039/c1lc20683d. Epub 2011 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验