Murray Coleman, Pao Edward, Tseng Peter, Aftab Shayan, Kulkarni Rajan, Rettig Matthew, Di Carlo Dino
Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA, 90095-1600, USA.
California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
Small. 2016 Apr 13;12(14):1891-9. doi: 10.1002/smll.201502120. Epub 2016 Feb 17.
Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument.
从生物样本中提取稀有靶细胞对生命科学研究具有重要意义。传统的稀有细胞分离技术,如磁激活细胞分选,虽然可靠,但基于表面抗原表达进行的是粗略的定性分离。本文报道了一种定量磁分离技术,该技术利用高磁力磁棘轮作用于具有梯度间距的软磁微柱阵列,该系统用于基于氧化铁含量(IOC)分离和浓缩磁珠,并基于表面表达分离细胞。该系统由一个坡莫合金微柱阵列的微芯片组成,微柱的横向间距逐渐增大,以及一个用于产生循环磁场的机电装置。具有较高IOC的颗粒在较大间距的微柱阵列上分离并达到平衡。建立了一个半解析模型来预测颗粒和细胞的行为。使用该系统,基于1μm抗上皮细胞粘附分子(EpCAM)颗粒的结合量作为表达指标,对LNCaP细胞进行分离。磁棘轮细胞计数系统能够分辨出±13个结合颗粒的差异,基于EpCAM表达成功区分LNCaP和PC3细胞群,与流式细胞术分析结果相关。作为概念验证,从患者血液中分离出纯度为74%的EpCAM标记细胞,证明了该定量磁分离仪器的潜力。