Park Jihye, Jiang Qin, Feng Dawei, Mao Lanqun, Zhou Hong-Cai
Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, P. R. China.
J Am Chem Soc. 2016 Mar 16;138(10):3518-25. doi: 10.1021/jacs.6b00007. Epub 2016 Mar 4.
The understanding of nanomaterials for targeted cancer therapy is of great importance as physical parameters of nanomaterials have been shown to be strong determinants that can promote cellular responses. However, there have been rare platforms that can vastly tune the core of nanoparticles at a molecular level despite various nanomaterials employed in such studies. Here we show targeted photodynamic therapy (PDT) with Zr(IV)-based porphyrinic metal-organic framework (MOF) nanoparticles. Through a bottom-up approach, the size of MOF nanoparticles was precisely tuned in a broad range with a designed functional motif, built upon selection of building blocks of the MOF. In particular, molecular properties of the porphyrinic linker are maintained in the MOF nanoparticles regardless of their sizes. Therefore, size-dependent cellular uptake and ensuing PDT allowed for screening of the optimal size of MOF nanoparticles for PDT while MOF nanoparticle formulation of the photosensitizer showed better PDT efficacy than that of its small molecule. Additionally, Zr6 clusters in the MOF enabled an active targeting modality through postsynthetic modification, giving even more enhanced PDT efficacy. Together with our finding of size controllability covering a broad range in the nano regime, we envision that MOFs can be a promising nanoplatform by adopting advanced small molecule systems into the tunable framework with room for postsynthetic modification.
由于纳米材料的物理参数已被证明是能够促进细胞反应的重要决定因素,因此对用于靶向癌症治疗的纳米材料的理解至关重要。然而,尽管在此类研究中使用了各种纳米材料,但很少有平台能够在分子水平上对纳米颗粒的核心进行大幅度调控。在此,我们展示了基于锆(IV)的卟啉金属有机框架(MOF)纳米颗粒的靶向光动力疗法(PDT)。通过自下而上的方法,基于MOF构建块的选择,利用设计的功能基序在很宽的范围内精确调控MOF纳米颗粒的尺寸。特别地,无论尺寸大小,MOF纳米颗粒中卟啉连接体的分子性质得以保持。因此,尺寸依赖性的细胞摄取及随之而来的PDT使得能够筛选出用于PDT的MOF纳米颗粒的最佳尺寸,同时光敏剂的MOF纳米颗粒制剂显示出比其小分子更好的PDT疗效。此外,MOF中的Zr6簇通过后合成修饰实现了主动靶向模式,从而使PDT疗效进一步增强。连同我们在纳米尺度范围内发现的宽范围尺寸可控性,我们设想通过将先进的小分子系统引入具有后合成修饰空间的可调框架中,MOF可以成为一个有前景的纳米平台。