Suppr超能文献

工程化改造大肠杆菌用于微生物生产丁酮。

Engineering Escherichia coli for Microbial Production of Butanone.

作者信息

Srirangan Kajan, Liu Xuejia, Akawi Lamees, Bruder Mark, Moo-Young Murray, Chou C Perry

机构信息

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada

出版信息

Appl Environ Microbiol. 2016 Apr 18;82(9):2574-2584. doi: 10.1128/AEM.03964-15. Print 2016 May.

Abstract

To expand the chemical and molecular diversity of biotransformation using whole-cell biocatalysts, we genetically engineered a pathway in Escherichia coli for heterologous production of butanone, an important commodity ketone. First, a 1-propanol-producing E. coli host strain with its sleeping beauty mutase (Sbm) operon being activated was used to increase the pool of propionyl-coenzyme A (propionyl-CoA). Subsequently, molecular heterofusion of propionyl-CoA and acetyl-CoA was conducted to yield 3-ketovaleryl-CoA via a CoA-dependent elongation pathway. Lastly, 3-ketovaleryl-CoA was channeled into the clostridial acetone formation pathway for thioester hydrolysis and subsequent decarboxylation to form butanone. Biochemical, genetic, and metabolic factors affecting relative levels of ketogenesis, acidogenesis, and alcohol genesis under selected fermentative culture conditions were investigated. Using the engineered E. coli strain for batch cultivation with 30 g liter(-1)glycerol as the carbon source, we achieved coproduction of 1.3 g liter(-1)butanone and 2.9 g liter(-1)acetone. The results suggest that approximately 42% of spent glycerol was utilized for ketone biosynthesis, and thus they demonstrate potential industrial applicability of this microbial platform.

摘要

为了利用全细胞生物催化剂扩展生物转化的化学和分子多样性,我们在大肠杆菌中进行基因工程改造,构建了一条用于异源生产丁酮(一种重要的商品酮)的途径。首先,使用激活了其睡美人变位酶(Sbm)操纵子的产1-丙醇大肠杆菌宿主菌株来增加丙酰辅酶A(丙酰-CoA)的库。随后,通过依赖辅酶A的延伸途径对丙酰-CoA和乙酰-CoA进行分子异源融合,生成3-酮戊酰-CoA。最后,将3-酮戊酰-CoA引入梭菌丙酮形成途径进行硫酯水解,随后脱羧形成丁酮。研究了在选定的发酵培养条件下影响生酮、产酸和产醇相对水平的生化、遗传和代谢因素。使用工程化的大肠杆菌菌株以30 g L⁻¹甘油作为碳源进行分批培养,我们实现了1.3 g L⁻¹丁酮和2.9 g L⁻¹丙酮的联产。结果表明,约42%的废甘油被用于酮的生物合成,因此证明了这个微生物平台具有潜在的工业应用价值。

相似文献

1
Engineering Escherichia coli for Microbial Production of Butanone.
Appl Environ Microbiol. 2016 Apr 18;82(9):2574-2584. doi: 10.1128/AEM.03964-15. Print 2016 May.
3
Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
Appl Microbiol Biotechnol. 2014 Nov;98(22):9499-515. doi: 10.1007/s00253-014-6093-9. Epub 2014 Oct 10.
4
Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5259-5272. doi: 10.1007/s00253-020-10580-5. Epub 2020 Apr 14.
5
Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
BMC Biotechnol. 2017 Apr 14;17(1):38. doi: 10.1186/s12896-017-0354-5.
6
Engineering Escherichia coli for high-level production of propionate.
J Ind Microbiol Biotechnol. 2015 Jul;42(7):1057-72. doi: 10.1007/s10295-015-1627-4. Epub 2015 May 7.
7
High-level heterologous production of propionate in engineered Escherichia coli.
Biotechnol Bioeng. 2020 May;117(5):1304-1315. doi: 10.1002/bit.27276. Epub 2020 Feb 3.
9
Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli.
Metab Eng. 2020 Sep;61:141-151. doi: 10.1016/j.ymben.2019.11.005. Epub 2019 Nov 12.
10
Production of isopropanol by metabolically engineered Escherichia coli.
Appl Microbiol Biotechnol. 2008 Jan;77(6):1219-24. doi: 10.1007/s00253-007-1246-8. Epub 2007 Nov 7.

引用本文的文献

1
Synthetic metabolism for acetone biosynthesis driven by ATP regeneration.
RSC Chem Biol. 2022 Sep 16;3(11):1331-1341. doi: 10.1039/d2cb00170e. eCollection 2022 Nov 2.
2
High-throughput colorimetric assays optimized for detection of ketones and aldehydes produced by microbial cell factories.
Microb Biotechnol. 2022 Sep;15(9):2426-2438. doi: 10.1111/1751-7915.14097. Epub 2022 Jun 10.
3
Microbial production of advanced biofuels.
Nat Rev Microbiol. 2021 Nov;19(11):701-715. doi: 10.1038/s41579-021-00577-w. Epub 2021 Jun 25.
4
C4 Bacterial Volatiles Improve Plant Health.
Pathogens. 2021 May 31;10(6):682. doi: 10.3390/pathogens10060682.
5
Feasible-metabolic-pathway-exploration technique using chemical latent space.
Bioinformatics. 2020 Dec 30;36(Suppl_2):i770-i778. doi: 10.1093/bioinformatics/btaa809.
6
Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone.
Metab Eng. 2020 Sep;61:335-343. doi: 10.1016/j.ymben.2020.05.008. Epub 2020 May 29.
7
Metabolic Engineering Design Strategies for Increasing Acetyl-CoA Flux.
Metabolites. 2020 Apr 23;10(4):166. doi: 10.3390/metabo10040166.
8
Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol.
Biotechnol Biofuels. 2020 Mar 11;13:45. doi: 10.1186/s13068-020-01689-w. eCollection 2020.
9
Short-chain ketone production by engineered polyketide synthases in Streptomyces albus.
Nat Commun. 2018 Nov 1;9(1):4569. doi: 10.1038/s41467-018-07040-0.

本文引用的文献

1
Engineering Escherichia coli for high-level production of propionate.
J Ind Microbiol Biotechnol. 2015 Jul;42(7):1057-72. doi: 10.1007/s10295-015-1627-4. Epub 2015 May 7.
2
Metabolic engineering strategies for microbial synthesis of oleochemicals.
Metab Eng. 2015 May;29:1-11. doi: 10.1016/j.ymben.2015.01.009. Epub 2015 Feb 7.
3
Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
Appl Microbiol Biotechnol. 2014 Nov;98(22):9499-515. doi: 10.1007/s00253-014-6093-9. Epub 2014 Oct 10.
5
Biological production of 2-butanone in Escherichia coli.
ChemSusChem. 2014 Jan;7(1):92-5. doi: 10.1002/cssc.201300853. Epub 2013 Nov 5.
6
Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
Appl Microbiol Biotechnol. 2014 Jan;98(1):95-104. doi: 10.1007/s00253-013-5285-z. Epub 2013 Oct 11.
8
Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
Metab Eng. 2013 May;17:12-22. doi: 10.1016/j.ymben.2013.01.008. Epub 2013 Jan 31.
9
A modified pathway for the production of acetone in Escherichia coli.
Metab Eng. 2013 Jan;15:218-25. doi: 10.1016/j.ymben.2012.08.001. Epub 2012 Aug 14.
10
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Nat Chem Biol. 2012 May 17;8(6):536-46. doi: 10.1038/nchembio.970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验