Suppr超能文献

BK多瘤病毒通过不依赖小窝蛋白和网格蛋白的方式进入原代人近端肾小管上皮细胞。

Caveolin- and clathrin-independent entry of BKPyV into primary human proximal tubule epithelial cells.

作者信息

Zhao Linbo, Marciano Anthony T, Rivet Courtney R, Imperiale Michael J

机构信息

Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

出版信息

Virology. 2016 May;492:66-72. doi: 10.1016/j.virol.2016.02.007. Epub 2016 Feb 19.

Abstract

BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.

摘要

BK多瘤病毒(BKPyV)是一种人类病原体,可在移植患者中引发多瘤病毒相关性肾病和出血性膀胱炎。此前在动物细胞模型中已有报道称,神经节苷脂和小窝蛋白对于BKPyV感染是必需的。然而,我们实验室及其他机构最近的研究表明,用于感染研究的细胞类型会极大地影响病毒的行为。因此,我们希望在生理相关的原代细胞培养模型——人肾近端小管上皮细胞中重新研究BKPyV的进入机制。我们使用小干扰RNA(siRNA)敲低技术,干扰了UDP-葡萄糖神经酰胺葡萄糖基转移酶(UGCG)以及内吞囊泡膜蛋白小窝蛋白1、小窝蛋白2和网格蛋白重链的表达。结果表明,虽然BKPyV高效感染确实需要神经节苷脂,但它可通过一条不依赖小窝蛋白和网格蛋白的途径进入其天然宿主细胞。这些结果强调了在相关细胞培养模型中研究病毒的重要性。

相似文献

1
Caveolin- and clathrin-independent entry of BKPyV into primary human proximal tubule epithelial cells.
Virology. 2016 May;492:66-72. doi: 10.1016/j.virol.2016.02.007. Epub 2016 Feb 19.
2
Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells.
J Virol. 2007 Aug;81(16):8552-62. doi: 10.1128/JVI.00924-07. Epub 2007 Jun 6.
3
Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells.
J Proteome Res. 2015 Oct 2;14(10):4413-24. doi: 10.1021/acs.jproteome.5b00737. Epub 2015 Sep 23.
5
Identification of Rab18 as an Essential Host Factor for BK Polyomavirus Infection Using a Whole-Genome RNA Interference Screen.
mSphere. 2017 Jul 26;2(4). doi: 10.1128/mSphereDirect.00291-17. eCollection 2017 Jul-Aug.
7
Repression of BK virus infection of human renal proximal tubular epithelial cells by pravastatin.
Transplantation. 2008 May 15;85(9):1311-7. doi: 10.1097/TP.0b013e31816c4ec5.
9
Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry.
Virology. 2015 Jan 1;474:110-6. doi: 10.1016/j.virol.2014.10.013. Epub 2014 Nov 14.
10
Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells.
Mol Biol Cell. 2007 May;18(5):1570-85. doi: 10.1091/mbc.e06-07-0618. Epub 2007 Feb 21.

引用本文的文献

1
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection.
Pathogens. 2025 Jul 30;14(8):747. doi: 10.3390/pathogens14080747.
3
Massive entry of BK Polyomavirus induces transient cytoplasmic vacuolization of human renal proximal tubule epithelial cells.
PLoS Pathog. 2024 Nov 21;20(11):e1012681. doi: 10.1371/journal.ppat.1012681. eCollection 2024 Nov.
4
Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection.
Microbiol Spectr. 2023 Jun 15;11(3):e0087323. doi: 10.1128/spectrum.00873-23. Epub 2023 May 8.
5
Single-Cell Transcriptome Identifies the Renal Cell Type Tropism of Human BK Polyomavirus.
Int J Mol Sci. 2023 Jan 10;24(2):1330. doi: 10.3390/ijms24021330.
6
A Cell Culture Model of BK Polyomavirus Persistence, Genome Recombination, and Reactivation.
mBio. 2021 Oct 26;12(5):e0235621. doi: 10.1128/mBio.02356-21. Epub 2021 Sep 2.
8
Sending mixed signals: polyomavirus entry and trafficking.
Curr Opin Virol. 2021 Apr;47:95-105. doi: 10.1016/j.coviro.2021.02.004. Epub 2021 Mar 6.

本文引用的文献

1
Hemorrhagic cystitis after allogeneic hematopoietic cell transplantation: risk factors, graft source and survival.
Bone Marrow Transplant. 2015 Nov;50(11):1432-7. doi: 10.1038/bmt.2015.162. Epub 2015 Jul 13.
3
Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection.
J Virol. 2015 May;89(9):5032-9. doi: 10.1128/JVI.03650-14. Epub 2015 Feb 18.
4
Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry.
Virology. 2015 Jan 1;474:110-6. doi: 10.1016/j.virol.2014.10.013. Epub 2014 Nov 14.
5
A structure-guided mutation in the major capsid protein retargets BK polyomavirus.
PLoS Pathog. 2013;9(10):e1003688. doi: 10.1371/journal.ppat.1003688. Epub 2013 Oct 10.
6
Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking.
J Virol. 2013 Aug;87(16):8843-52. doi: 10.1128/JVI.00664-13. Epub 2013 Jun 5.
8
Roles of ATM and ATR-mediated DNA damage responses during lytic BK polyomavirus infection.
PLoS Pathog. 2012;8(8):e1002898. doi: 10.1371/journal.ppat.1002898. Epub 2012 Aug 30.
9
Management of polyomavirus-associated nephropathy in renal transplant recipients.
Nat Rev Nephrol. 2012 Apr 17;8(7):390-402. doi: 10.1038/nrneph.2012.64.
10
The polyomavirus BK large T-antigen-derived peptide elicits an HLA-DR promiscuous and polyfunctional CD4+ T-cell response.
Clin Vaccine Immunol. 2011 May;18(5):815-24. doi: 10.1128/CVI.00487-10. Epub 2011 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验