Suppr超能文献

基于核磁共振氢谱超极化的化学传感:在天然提取物中的应用。

NMR-Based Chemosensing via p-H2 Hyperpolarization: Application to Natural Extracts.

作者信息

Hermkens Niels K J, Eshuis Nan, van Weerdenburg Bram J A, Feiters Martin C, Rutjes Floris P J T, Wijmenga Sybren S, Tessari Marco

机构信息

Institute for Molecules and Materials, Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

出版信息

Anal Chem. 2016 Mar 15;88(6):3406-12. doi: 10.1021/acs.analchem.6b00184. Epub 2016 Mar 3.

Abstract

When dealing with trace analysis of complex mixtures, NMR suffers from both low sensitivity and signal overlap. NMR chemosensing, in which the association between an analyte and a receptor is "signaled" by an NMR response, has been proposed as a valuable analytical tool for biofluids and natural extracts. Such chemosensors offer the possibility to simultaneously detect and distinguish different analytes in solution, which makes them particularly suitable for analytical applications on complex mixtures. In this study, we have combined NMR chemosensing with nuclear spin hyperpolarization. This was realized using an iridium complex as a receptor in the presence of parahydrogen: association of the target analytes to the metal center results in approximately 1000-fold enhancement of the NMR response. This amplification allows the detection, identification, and quantification of analytes at low-micromolar concentrations, provided they can weakly associate to the iridium chemosensor. Here, our NMR chemosensing approach was applied to the quantitative determination of several flavor components in methanol extracts of ground coffee.

摘要

在处理复杂混合物的痕量分析时,核磁共振(NMR)存在灵敏度低和信号重叠的问题。NMR化学传感通过NMR响应“信号化”分析物与受体之间的缔合,已被提议作为生物流体和天然提取物的一种有价值的分析工具。这种化学传感器提供了同时检测和区分溶液中不同分析物的可能性,这使得它们特别适用于复杂混合物的分析应用。在本研究中,我们将NMR化学传感与核自旋超极化相结合。这是在仲氢存在的情况下,使用铱配合物作为受体来实现的:目标分析物与金属中心的缔合导致NMR响应增强约1000倍。这种放大作用使得在低微摩尔浓度下检测、鉴定和定量分析物成为可能,前提是它们能与铱化学传感器发生弱缔合。在此,我们的NMR化学传感方法被应用于定量测定研磨咖啡甲醇提取物中的几种风味成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验