Khajetoorians A A, Steinbrecher M, Ternes M, Bouhassoune M, dos Santos Dias M, Lounis S, Wiebe J, Wiesendanger R
Department of Physics, Hamburg University, 20355 Hamburg, Germany.
Institute for Molecules and Materials, Radboud University, 6525AJ Nijmegen, The Netherlands.
Nat Commun. 2016 Feb 23;7:10620. doi: 10.1038/ncomms10620.
Chiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii-Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii-Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets.
手性磁体因其固有的纳米尺度尺寸和节能特性,是实现高密度磁存储技术的一条很有前景的途径。设计手性磁体需要对磁交换相互作用进行原子级控制,包括Dzyaloshinskii-Moriya相互作用,该相互作用定义了两个耦合磁矩磁化的旋转方向。在此,我们表明,金属表面上两个单独磁原子之间由间接传导电子介导的Dzyaloshinskii-Moriya相互作用,可以通过扫描隧道显微镜的针尖改变原子间距离来进行操控。我们通过将测量结果与量子磁模型和从头算计算进行比较来量化这种相互作用,从而得出取决于原子间间距的原子对的手性基态图。该图能够在稀原子尺度磁体中定制磁化的手性。