Hermenau J, Ibañez-Azpiroz J, Hübner Chr, Sonntag A, Baxevanis B, Ton K T, Steinbrecher M, Khajetoorians A A, Dos Santos Dias M, Blügel S, Wiesendanger R, Lounis S, Wiebe J
Department of Physics, Hamburg University, 20355, Hamburg, Germany.
Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, Jülich, 52425, Germany.
Nat Commun. 2017 Sep 21;8(1):642. doi: 10.1038/s41467-017-00506-7.
A cluster of a few magnetic atoms on the surface of a nonmagnetic substrate is one suitable realization of a bit for spin-based information technology. The prevalent approach to achieve magnetic stability is decoupling the cluster spin from substrate conduction electrons in order to suppress destabilizing spin-flips. However, this route entails less flexibility in tailoring the coupling between the bits needed for spin-processing. Here, we use a spin-resolved scanning tunneling microscope to write, read, and store spin information for hours in clusters of three atoms strongly coupled to a substrate featuring a cloud of non-collinearly polarized host atoms, a so-called non-collinear giant moment cluster. The giant moment cluster can be driven into a Kondo screened state by simply moving one of its atoms to a different site. Using the exceptional atomic tunability of the non-collinear substrate mediated Dzyaloshinskii-Moriya interaction, we propose a logical scheme for a four-state memory.Information technology based on few atom magnets requires both long spin-energy relaxation times and flexible inter-bit coupling. Here, the authors show routes to manipulate information in three-atom clusters strongly coupled to substrate electrons by exploiting Dzyaloshinskii-Moriya interactions.
非磁性衬底表面上的几个磁性原子簇是基于自旋的信息技术中一种合适的比特实现方式。实现磁稳定性的普遍方法是将簇自旋与衬底传导电子解耦,以抑制不稳定的自旋翻转。然而,这条途径在调整自旋处理所需比特之间的耦合方面灵活性较差。在这里,我们使用自旋分辨扫描隧道显微镜,在与具有非共线极化主体原子云的衬底强烈耦合的三个原子簇中写入、读取和存储自旋信息长达数小时,这就是所谓的非共线巨磁矩簇。通过简单地将巨磁矩簇中的一个原子移动到不同位置,就可以将其驱动到近藤屏蔽态。利用非共线衬底介导的Dzyaloshinskii-Moriya相互作用的特殊原子可调性,我们提出了一种四态存储器的逻辑方案。基于少数原子磁体的信息技术既需要长的自旋能量弛豫时间,又需要灵活的比特间耦合。在这里,作者展示了通过利用Dzyaloshinskii-Moriya相互作用来操纵与衬底电子强烈耦合的三原子簇中信息的途径。