Suppr超能文献

混合疏水/亲水活性炭电极的电容去离子性能得到改善。

Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes.

作者信息

Aslan M, Zeiger M, Jäckel N, Grobelsek I, Weingarth D, Presser V

机构信息

INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.

出版信息

J Phys Condens Matter. 2016 Mar 23;28(11):114003. doi: 10.1088/0953-8984/28/11/114003. Epub 2016 Feb 23.

Abstract

Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limits the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2-activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm(3) g(-1) and 2113 m(2) g(-1), this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to capitalize on the improved pore structure by admixing as received (more hydrophilic) carbon with CO2-treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates into an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg g(-1) SAC for an optimized 2:1 mixture (by mass).

摘要

电容去离子化(CDI)是一种很有前景的脱盐技术,应用于低摩尔浓度水性电解质时具有高能效。作为一种界面过程,CDI运行过程中的离子电吸附对孔隙结构敏感,且碳电极的总孔体积限制了最大盐吸附容量(SAC)。因此,作为一种广泛用于提高材料孔隙率的方法,碳的活化对于提高SAC值也应该极具吸引力。在我们的研究中,我们在950℃至1020℃之间使用易于规模化且易于应用的CO2活化来增加市售活性炭的孔隙率。虽然孔体积和表面积可显著增加至1.51 cm(3) g(-1)和2113 m(2) g(-1),但这是以使碳更疏水为代价的。我们提出了一种新颖的策略,即对于CDI电极,在不使用膜的情况下,将原样(更亲水)的碳与CO2处理过(更疏水)的碳混合,以利用改善后的孔隙结构。这转化为在高摩尔浓度和低摩尔浓度(1 M和5 mM NaCl)下增强的电荷存储能力以及显著改善的CDI性能(在5 mM NaCl时)。特别是,对于优化的2:1(质量比)混合物,我们在0.86的电荷效率下以13.1 mg g(-1)的SAC获得了稳定的CDI性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验