Suppr超能文献

再铸铁磁体Fe@C阳极中自旋调控的锂扩散

Spin-Orchestrated Lithium Diffusion in Reforged Ferromagnetic Fe@C Anodes.

作者信息

Goh Myeong Seok, Shin Hyunsub, Lee Jaehun, Park No-Kuk, Kim Joonwoo, Joo Sang Woo, Kim Ki Hyeon, Kang Misook

机构信息

Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.

Institute of Clean Technology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 Sep;12(36):e06133. doi: 10.1002/advs.202506133. Epub 2025 Jul 2.

Abstract

This reports a dual-functional approach in which Fe catalysts, initially employed for methane pyrolysis to generate COx-free hydrogen, are directly repurposed as anode materials following in situ carbon deposition. During methane splitting, catalytic decomposition of CH₄ at 900 °C forms onion-like graphitic carbon shells (≈280 layers) around Fe cores (≈50 nm), producing a structurally stable and electrically conductive Fe@C900 composite without post-treatment. This carbon-enriched catalyst demonstrates exceptional electrochemical behavior when transitioned into a battery context. Without any conductive additives, Fe@C900 delivers a reversible capacity of 380 mAh g⁻¹ with 98% retention over 1000 cycles at 1 C. Under a 5000 G magnetic field, spin alignment within the Fe cores triggers directional lithium-ion migration, enhancing rate performance by 150%. Multimodal characterization reveals accelerated lithium kinetics, stable SEI evolution, and deep lithiation behavior. DFT calculations further confirm strong lithium adsorption (-24.14 eV) and low insertion barriers (-22.85 eV), validating the spin-guided diffusion mechanism. This work introduces a new class of hydrogen-derived ferromagnetic anodes, where the byproduct of a clean hydrogen process is re-engineered into a high-rate, conductor-free lithium storage platform. By coupling hydrogen generation with energy storage through shared material intermediates, this strategy offers a scalable path to carbon-efficient, magnetically enhanced battery systems.

摘要

本报告介绍了一种双功能方法,其中最初用于甲烷热解以生成无COx氢气的铁催化剂,在原位碳沉积后直接重新用作阳极材料。在甲烷裂解过程中,CH₄在900℃下的催化分解在铁核(≈50nm)周围形成洋葱状石墨碳壳(≈280层),无需后处理即可生产出结构稳定且导电的Fe@C900复合材料。这种富含碳的催化剂在转变为电池应用时表现出卓越的电化学性能。在没有任何导电添加剂的情况下,Fe@C900在1C下提供380 mAh g⁻¹的可逆容量,在1000次循环中保持率为98%。在5000 G磁场下,铁核内的自旋排列触发定向锂离子迁移,使倍率性能提高150%。多模态表征揭示了加速的锂动力学、稳定的SEI演变和深度锂化行为。DFT计算进一步证实了强烈的锂吸附(-24.14 eV)和低插入势垒(-22.85 eV),验证了自旋引导扩散机制。这项工作引入了一类新型的氢衍生铁磁阳极,其中清洁制氢过程的副产物被重新设计成一个高倍率、无导体的锂存储平台。通过共享材料中间体将制氢与储能相结合,该策略为碳高效、磁增强电池系统提供了一条可扩展的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d142/12463094/80565ab8cd37/ADVS-12-e06133-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验