Suppr超能文献

假设:祖源蛋白形成旁系同源物以及旁系同源物诱变推动端粒结合蛋白的快速进化。

Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins.

作者信息

Lustig Arthur J

机构信息

Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA.

出版信息

Front Genet. 2016 Feb 10;7:10. doi: 10.3389/fgene.2016.00010. eCollection 2016.

Abstract

Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.

摘要

通过对真菌细胞和复杂生物体进行的精妙研究,我们提出了一种统一的范式,用于解释端粒结合蛋白(TBP)的快速进化。这些蛋白与端粒DNA和端粒蛋白中的一种(或两种)相关联。TBP保护并调节端粒的结构和功能。其中涉及四个关键因素。首先,通常与端粒DNA结合的TBP包括c-Myb结合蛋白、OB折叠单链结合蛋白和G-G碱基对Hoogsteen结构(G4)结合蛋白。它们各自独立发挥作用,或在某些情况下协同作用,以提供最低水平的端粒功能。由于这些最低要求以及蛋白质组中这些基序的同源物数量众多,DNA端粒结合活性的产生可能比预期更容易。其次,端粒功能障碍会通过提高重组率、基因组倍性和基因突变频率导致基因组不稳定。与其祖先蛋白发生分化的旁系同源物的形成最终会产生高频率的功能改变的TBP。第三,组装成复合物的TBP(如哺乳动物的保护素)可从新出现的功能中受益。第四,TBP复合物进化中的一个限制因素是TBP之间形成相互兼容的相互作用表面。这些因素在不同门的进化中可能具有不同程度的重要性,复杂植物中明显更简单的端粒就说明了这一点。选择性压力可以利用旁系同源物形成和诱变机制,沿着依赖于必要生理变化的途径推动TBP进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ee/4748036/d0b67c7d0d41/fgene-07-00010-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验