Suppr超能文献

通过控制法拉第电感和电子路径长度抑制纳米结构金属中的红外吸收。

Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

作者信息

Han Sang Eon

出版信息

Opt Express. 2016 Feb 8;24(3):2577-89. doi: 10.1364/OE.24.002577.

Abstract

Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.

摘要

在过去几十年里,纳米结构金属一直是光学应用领域的研究热点。然而,金属固有的损耗限制了金属纳米结构在各种应用中的光学性能。特别是,表面等离子体激元或其他共振导致的金属中光的集中会引起金属的大量吸收。在此,我们为了实现低损耗而避免等离子体激发,并研究进一步抑制纳米结构金属中损耗的方法。我们证明,通过增加法拉第电感和电子路径长度,可以在很宽的波段上显著降低金属纳米结构中的寄生吸收。对于一个示例结构,在短波长和长波长红外之间的非常宽的光谱范围内,与平面薄膜相比,损耗降低了一个多数量级以上。对于一个光电探测器结构,由于对金属吸收的选择性抑制,光活性材料中的吸收比例增加了两个数量级,光响应度提高了15倍。这些发现可能会惠及许多需要低损耗的金属基应用,如光伏、光电导探测器、太阳能选择性表面、红外透明除霜窗以及其他超材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验