University of Victoria, Canada.
Nanotechnology. 2019 May 24;30(21):212001. doi: 10.1088/1361-6528/ab0435. Epub 2019 Mar 13.
The basic theoretical understanding of light interacting with nanostructured metals that has existed since the early 1900s has become more relevant in the last two decades, largely because of new approaches to structure metals down to the nanometer scale or smaller. Here, a broad overview of the concepts and applications of nanostructuring metals for light-based technologies is given. The theory of the response of metals to an applied oscillating field is given, including a discussion of nonlocal, nonlinear and quantum effects. Using this metal response, the guiding of electromagnetic (light) waves using metals is given, with a particular emphasis on the impact of nanostructured metals for tighter confinement and slower propagation. Similarly, the influence of metal nanostructures on light scattering by isolated metal structures, like nanoparticles and nanoantennas, is described, with basic results presented including plasmonic/circuit resonances, the single channel limit, directivity enhancement, the maximum power transfer theorem, limits on the magnetic response from kinetic inductance and the scaling of gap plasmons to the nanometer scale and smaller. A brief overview of nanofabrication approaches to creating metal nanostructures is given. Finally, existing and emerging light-based applications are presented, including those for sensing, spectroscopy (including local refractive index, Raman, IR absorption), detection (including Schottky detectors), switching (including terahertz photoconductive antennas), modulation, energy harvesting and photocatalysis, light emission (including lasers and tunneling based light emission), optical tweezing, nonlinear optics, subwavelength imaging and lithography and high density data storage.
自 20 世纪初以来,人们对光与纳米结构金属相互作用的基本理论理解已经变得更加相关,这在很大程度上是因为新的方法可以将金属结构缩小到纳米级或更小。本文对用于基于光的技术的金属纳米结构化的概念和应用进行了广泛的概述。给出了金属对施加的振荡场的响应的理论,包括对非局部、非线性和量子效应的讨论。利用这种金属响应,给出了使用金属引导电磁波(光)波的方法,特别强调了纳米结构化金属对更紧密的限制和更缓慢的传播的影响。同样,描述了金属纳米结构对孤立金属结构(如纳米粒子和纳米天线)的光散射的影响,给出了基本结果,包括等离子体/电路共振、单通道限制、指向性增强、最大功率传输定理、限制来自动力学电感的磁响应以及间隙等离子体的缩放纳米级和更小。简要介绍了用于创建金属纳米结构的纳米制造方法。最后,提出了现有的和新兴的基于光的应用,包括用于传感、光谱学(包括局部折射率、拉曼、红外吸收)、检测(包括肖特基探测器)、开关(包括太赫兹光电导天线)、调制、能量收集和光催化、光发射(包括激光和基于隧道的光发射)、光镊、非线性光学、亚波长成像和光刻以及高密度数据存储的应用。