Wehrhan Marc, Rauneker Philipp, Sommer Michael
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Soil Landscape Research, Eberswalder Straße 84, Müncheberg 15374, Germany.
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Hydrology, Eberswalder Straße 84, Müncheberg 15374, Germany.
Sensors (Basel). 2016 Feb 19;16(2):255. doi: 10.3390/s16020255.
The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.
使用无人机进行遥感的优势在于图像具有高空间分辨率、时间灵活性以及来自不同波长域的窄带光谱数据。这使得能够检测环境变量的时空动态,例如农业景观中与植物相关的碳动态。在本文中,我们使用安装在固定翼无人机Carolo P360上的12波段多光谱相机拍摄的图像,对新鲜植物生物量和相关碳(C)输出的空间模式进行了量化。该研究于2014年在德国东北部的CarboZALF-D试验区进行。从经辐射校正和校准的紫花苜蓿(Medicago sativa)图像中,使用六个近红外波段的波段组合测试了四种常用植被指数(VI)的性能。使用近红外波段b899的增强植被指数(EVI)在紫花苜蓿新鲜植物生物量的地面测量值与植被指数之间获得了最高相关性。由此生成的地图被转换为干植物生物量,最终按收获量放大到总碳输出量。在田间和地块尺度上观察到的空间变异性部分可归因于小规模土壤异质性。