Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.
Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel.
J Am Chem Soc. 2016 Mar 23;138(11):3715-30. doi: 10.1021/jacs.5b12150. Epub 2016 Mar 11.
C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.
低价铁配合物促进的 C-H 键活化/功能化最近成为利用丰富的第一过渡金属进行这种困难转化的一种很有前途的方法。在此,我们使用广泛的密度泛函理论和高级从头算耦合簇计算来阐明这些有趣反应的机制。我们对 C-H 芳基化反应的关键机理发现揭示了两态反应(TSR)情景,其中低自旋 Fe(II)单重态最初是激发态,越过高自旋基态并促进 C-H 键断裂。随后,芳基转移发生,随后在单电子转移(SET)步骤中氧化 Fe(II)为 Fe(III),其中二氯代烷用作氧化剂,从而促进最终的 C-C 偶联并完成 C-H 功能化。为下一轮 C-H 活化再生 Fe(II)催化剂涉及 C-C 键偶联后生成的 Fe(I)物种的 SET 氧化。发现铁的配体球在 TSR 机制中起着至关重要的作用,通过稳定介导 C-H 活化的反应性低自旋态来稳定配体球。这是首次成功地将高氧化态铁化学中构想的成功 TSR 概念成功地用于解释由低价铁配合物促进的反应的反应性。涉及其他二价中晚期第一过渡金属的比较研究表明,铁是该 TSR 机制中用于 C-H 活化的最佳金属。预计使用合适的配体球稳定低自旋 Mn(II)应该会产生另一种用于有效 C-H 键活化的有前途的候选物。因此,这种新的 TSR 情景成为使用低价第一过渡金属进行 C-H 活化反应的一种新策略。