文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo.

作者信息

Zheng Bo, von See Marc P, Yu Elaine, Gunel Beliz, Lu Kuan, Vazin Tandis, Schaffer David V, Goodwill Patrick W, Conolly Steven M

机构信息

1. Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.

2. Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.

出版信息

Theranostics. 2016 Jan 1;6(3):291-301. doi: 10.7150/thno.13728. eCollection 2016.


DOI:10.7150/thno.13728
PMID:26909106
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4737718/
Abstract

Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R(2) = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/41b5b122e151/thnov06p0291g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/571510040f54/thnov06p0291g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/68fbd8e6fea4/thnov06p0291g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/bc1334d6e17b/thnov06p0291g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/f27da5bb1472/thnov06p0291g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/535df7c74a20/thnov06p0291g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/d4e8850b5395/thnov06p0291g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/5fe972bdc705/thnov06p0291g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/d250d254e927/thnov06p0291g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/41b5b122e151/thnov06p0291g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/571510040f54/thnov06p0291g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/68fbd8e6fea4/thnov06p0291g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/bc1334d6e17b/thnov06p0291g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/f27da5bb1472/thnov06p0291g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/535df7c74a20/thnov06p0291g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/d4e8850b5395/thnov06p0291g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/5fe972bdc705/thnov06p0291g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/d250d254e927/thnov06p0291g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82f/4737718/41b5b122e151/thnov06p0291g009.jpg

相似文献

[1]
Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo.

Theranostics. 2016-1-1

[2]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[3]
In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.

Biomaterials. 2015-6

[4]
Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium.

Circulation. 2007-9-11

[5]
Tomographic magnetic particle imaging of cancer targeted nanoparticles.

Nanoscale. 2017-12-7

[6]
Inhibition of collagen deposit in obstructed rat bladder outlet by transplantation of superparamagnetic iron oxide-labeled human mesenchymal stem cells as monitored by molecular magnetic resonance imaging (MRI).

Cell Transplant. 2012-3-22

[7]
In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation.

J Neurosurg. 2008-2

[8]
Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells .

Nanoscale. 2023-2-16

[9]
In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T.

J Magn Reson Imaging. 2007-6

[10]
Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.

Biomaterials. 2013-2-21

引用本文的文献

[1]
CAR-T therapy-based innovations in the enhancement of contemporary anti-tumor therapies.

Front Immunol. 2025-7-2

[2]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[3]
Thermal dose feedback control systems applied to magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2025-12

[4]
Advancements in molecular imaging for the diagnosis and treatment of pancreatic ductal adenocarcinoma.

Nanoscale Adv. 2025-4-22

[5]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[6]
Overcoming the Blood-Brain Barrier: Multifunctional Nanomaterial-Based Strategies for Targeted Drug Delivery in Neurological Disorders.

Small Sci. 2024-10-6

[7]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[8]
Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells.

J Dev Biol. 2025-2-21

[9]
Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification.

Mol Imaging Biol. 2025-2

[10]
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.

Theranostics. 2024

本文引用的文献

[1]
In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles.

Chem Soc Rev. 2015-12-7

[2]
Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.

Sci Rep. 2015-9-11

[3]
First experimental evidence of the feasibility of multi-color magnetic particle imaging.

Phys Med Biol. 2015-3-7

[4]
Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist--an initial in vitro study.

Int J Nanomedicine. 2014-11-20

[5]
Magnetic particle imaging with tailored iron oxide nanoparticle tracers.

IEEE Trans Med Imaging. 2015-5

[6]
The life and fate of mesenchymal stem cells.

Front Immunol. 2014-5-19

[7]
Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range.

Phys Med Biol. 2014-5-21

[8]
Stem cell imaging: from bench to bedside.

Cell Stem Cell. 2014-4-3

[9]
Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI.

Magn Reson Med. 2015-1

[10]
Nanoparticle contrast agents for computed tomography: a focus on micelles.

Contrast Media Mol Imaging. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索