Electronics Science and Technology Division, U.S. Naval Research Laboratory , Washington, DC 20375, United States.
National Research Council, U.S. Naval Research Laboratory , Washington, DC 20375, United States.
ACS Nano. 2016 Mar 22;10(3):3714-22. doi: 10.1021/acsnano.6b00252. Epub 2016 Mar 3.
We investigate hyperthermal ion implantation (HyTII) as a means for substitutionally doping layered materials such as graphene. In particular, this systematic study characterizes the efficacy of substitutional N-doping of graphene using HyTII over an N(+) energy range of 25-100 eV. Scanning tunneling microscopy results establish the incorporation of N substituents into the graphene lattice during HyTII processing. We illustrate the differences in evolution of the characteristic Raman peaks following incremental doses of N(+). We use the ratios of the integrated D and D' peaks, I(D)/I(D') to assess the N(+) energy-dependent doping efficacy, which shows a strong correlation with previously reported molecular dynamics (MD) simulation results and a peak doping efficiency regime ranging between approximately 30 and 50 eV. We also demonstrate the inherent monolayer depth control of the HyTII process, thereby establishing a unique advantage over other less-specific methods for doping. We achieve this by implementing twisted bilayer graphene (TBG), with one layer of isotopically enriched (13)C and one layer of natural (12)C graphene, and modify only the top layer of the TBG sample. By assessing the effects of N-HyTII processing, we uncover dose-dependent shifts in the transfer characteristics consistent with electron doping and we find dose-dependent electronic localization that manifests in low-temperature magnetotransport measurements.
我们研究了过热离子注入(HyTII)作为替代掺杂层状材料(如石墨烯)的一种手段。特别是,本系统研究通过 HyTII 在 25-100eV 的 N(+)能量范围内对石墨烯的替代 N 掺杂的功效进行了特征描述。扫描隧道显微镜结果表明,在 HyTII 处理过程中 N 取代基被掺入到石墨烯晶格中。我们说明了随着 N(+)剂量的增加,特征拉曼峰的演化差异。我们使用 D 和 D'峰的积分比,I(D)/I(D')来评估 N(+)能量相关的掺杂效率,这与先前报道的分子动力学(MD)模拟结果有很强的相关性,并且在大约 30 到 50eV 的范围内存在峰值掺杂效率。我们还展示了 HyTII 工艺对固有单层深度的控制,从而相对于其他不太具体的掺杂方法具有独特的优势。我们通过实施扭曲双层石墨烯(TBG)来实现这一点,其中一层是同位素富集的(13)C,另一层是天然(12)C 石墨烯,并且仅对 TBG 样品的顶层进行修改。通过评估 N-HyTII 处理的影响,我们发现与电子掺杂一致的转移特性随剂量的变化,并且我们发现了随剂量变化的电子局域化,这在低温磁输运测量中表现出来。