Suppr超能文献

运用联合方法预测治疗胰腺癌的候选药物

Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach.

作者信息

Ma Yanfen, Hu Jian, Zhang Ning, Dong Xinran, Li Ying, Yang Bo, Tian Weidong, Wang Xiaoqin

机构信息

Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China.

Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China.

出版信息

PLoS One. 2016 Feb 24;11(2):e0149896. doi: 10.1371/journal.pone.0149896. eCollection 2016.

Abstract

Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines.

摘要

胰腺癌是全球实体恶性肿瘤致死的主要原因。目前,吉西他滨是唯一获批用于治疗胰腺癌的药物。因此,开发针对这种疾病的新型治疗药物迫在眉睫。C-Map项目提供了大量基因表达数据,可用于挖掘重新定位的药物,这是一种很有前景的新药发现方法。通常,如果药物诱导的差异基因表达谱与目标疾病中差异表达的基因呈负相关,则该药物被认为可能对治疗该疾病有用。然而,通过基因表达谱相关性鉴定出的许多潜在有用药物(PUD)可能是假阳性,因为在C-Map中,应用药物的培养细胞系并非来自患病组织。为了解决这个问题,我们开发了一种联合方法来预测治疗胰腺癌的候选药物。我们首先通过基于C-Map的基因表达相关性分析确定胰腺癌的PUD。然后应用一种算法(Met-express)来预测参与胰腺癌代谢的关键胰腺癌(KPC)酶。最后,我们从PUD中选择候选药物,要求其靶点是KPC酶或KPC酶的底物/产物。使用这种联合方法,我们预测了七种治疗胰腺癌的候选药物,其中三种有文献证据支持,三种经实验验证对胰腺癌细胞系有抑制作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验