Moroz Alex, Bang Heejung
J Grad Med Educ. 2016 Feb;8(1):50-6. doi: 10.4300/JGME-D-15-00065.1.
Studies across medical specialties have shown that scores on residency self-assessment examinations (SAEs) can predict performance on certifying board examinations.
This study explored the predictive abilities of different composite SAE scores in physical medicine and rehabilitation and determined an optimal cut-point to identify an "at-risk" performance group.
For our study, both predictive scores (SAE scores) and outcomes (board examination scores) are expressed in national percentile scores. We analyzed data in graduates of a physical medicine and rehabilitation residency program between 2008 and 2014. We compared mean, median, lowest, highest, and most recent score among up to 3 SAE scores with respect to their associations with the outcome via linear and logistic regression. We computed regression/correlation coefficient, P value, R (2), area under the curve, sensitivity, specificity, and predictive values. Identification of optimal cut-point was guided by accuracy, discrimination, and model-fit statistics.
Predictor and outcome data were available for 88 of 99 residents. In regression models, all SAE predictors showed significant associations (P ≤ .001) and the mean score performed best (r = 0.55). A 1-point increase in mean SAE was associated with a 1.88 score increase in board score and a 16% decrease in odds of failure. The rule of mean SAE score below 47 yielded the highest accuracy, highest discrimination, and best model fit.
Mean SAE score may be used to predict performance on the American Board of Physical Medicine and Rehabilitation-written examination. The optimal statistical cut-point to identify the at-risk group for failure appears to be around the 47th SAE national percentile.
跨医学专业的研究表明,住院医师自我评估考试(SAE)的成绩可以预测认证委员会考试的表现。
本研究探讨了物理医学与康复领域不同综合SAE分数的预测能力,并确定了一个最佳切点以识别“有风险”的表现组。
在我们的研究中,预测分数(SAE分数)和结果(委员会考试分数)均以全国百分位数分数表示。我们分析了2008年至2014年间物理医学与康复住院医师培训项目毕业生的数据。我们通过线性和逻辑回归比较了多达3个SAE分数的均值、中位数、最低分、最高分和最近分数与结果之间的关联。我们计算了回归/相关系数、P值、R(2)、曲线下面积、敏感性、特异性和预测值。最佳切点的确定以准确性、辨别力和模型拟合统计量为指导。
99名住院医师中有88名的预测指标和结果数据可用。在回归模型中,所有SAE预测指标均显示出显著关联(P≤0.001),且平均分表现最佳(r = 0.55)。SAE平均分每增加1分,委员会考试分数增加1.88分,失败几率降低16%。SAE平均分低于47分的规则产生了最高的准确性、最高的辨别力和最佳的模型拟合。
SAE平均分可用于预测美国物理医学与康复委员会笔试的表现。识别失败风险组的最佳统计切点似乎在SAE全国百分位数的第47左右。