Suppr超能文献

利用住院医师自我评估考试成绩预测美国物理医学与康复委员会笔试表现

Predicting Performance on the American Board of Physical Medicine and Rehabilitation Written Examination Using Resident Self-Assessment Examination Scores.

作者信息

Moroz Alex, Bang Heejung

出版信息

J Grad Med Educ. 2016 Feb;8(1):50-6. doi: 10.4300/JGME-D-15-00065.1.

Abstract

BACKGROUND

Studies across medical specialties have shown that scores on residency self-assessment examinations (SAEs) can predict performance on certifying board examinations.

OBJECTIVE

This study explored the predictive abilities of different composite SAE scores in physical medicine and rehabilitation and determined an optimal cut-point to identify an "at-risk" performance group.

METHODS

For our study, both predictive scores (SAE scores) and outcomes (board examination scores) are expressed in national percentile scores. We analyzed data in graduates of a physical medicine and rehabilitation residency program between 2008 and 2014. We compared mean, median, lowest, highest, and most recent score among up to 3 SAE scores with respect to their associations with the outcome via linear and logistic regression. We computed regression/correlation coefficient, P value, R (2), area under the curve, sensitivity, specificity, and predictive values. Identification of optimal cut-point was guided by accuracy, discrimination, and model-fit statistics.

RESULTS

Predictor and outcome data were available for 88 of 99 residents. In regression models, all SAE predictors showed significant associations (P ≤ .001) and the mean score performed best (r = 0.55). A 1-point increase in mean SAE was associated with a 1.88 score increase in board score and a 16% decrease in odds of failure. The rule of mean SAE score below 47 yielded the highest accuracy, highest discrimination, and best model fit.

CONCLUSIONS

Mean SAE score may be used to predict performance on the American Board of Physical Medicine and Rehabilitation-written examination. The optimal statistical cut-point to identify the at-risk group for failure appears to be around the 47th SAE national percentile.

摘要

背景

跨医学专业的研究表明,住院医师自我评估考试(SAE)的成绩可以预测认证委员会考试的表现。

目的

本研究探讨了物理医学与康复领域不同综合SAE分数的预测能力,并确定了一个最佳切点以识别“有风险”的表现组。

方法

在我们的研究中,预测分数(SAE分数)和结果(委员会考试分数)均以全国百分位数分数表示。我们分析了2008年至2014年间物理医学与康复住院医师培训项目毕业生的数据。我们通过线性和逻辑回归比较了多达3个SAE分数的均值、中位数、最低分、最高分和最近分数与结果之间的关联。我们计算了回归/相关系数、P值、R(2)、曲线下面积、敏感性、特异性和预测值。最佳切点的确定以准确性、辨别力和模型拟合统计量为指导。

结果

99名住院医师中有88名的预测指标和结果数据可用。在回归模型中,所有SAE预测指标均显示出显著关联(P≤0.001),且平均分表现最佳(r = 0.55)。SAE平均分每增加1分,委员会考试分数增加1.88分,失败几率降低16%。SAE平均分低于47分的规则产生了最高的准确性、最高的辨别力和最佳的模型拟合。

结论

SAE平均分可用于预测美国物理医学与康复委员会笔试的表现。识别失败风险组的最佳统计切点似乎在SAE全国百分位数的第47左右。

相似文献

9
Predicting academic performance in surgical training.预测外科培训中的学业表现。
J Surg Educ. 2015 May-Jun;72(3):491-9. doi: 10.1016/j.jsurg.2014.11.013. Epub 2015 Jan 16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验