Suppr超能文献

巴松管蛋白和短笛蛋白调节泛素化,并将突触前分子动力学与活性调节基因表达联系起来。

Bassoon and piccolo regulate ubiquitination and link presynaptic molecular dynamics with activity-regulated gene expression.

作者信息

Ivanova Daniela, Dirks Anika, Fejtova Anna

机构信息

RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.

Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.

出版信息

J Physiol. 2016 Oct 1;594(19):5441-8. doi: 10.1113/JP271826. Epub 2016 Apr 24.

Abstract

Release of neurotransmitter is executed by complex multiprotein machinery, which is assembled around the presynaptic cytomatrix at the active zone. One well-established function of this proteinaceous scaffold is the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis, and the transmembrane molecules important for alignment of pre- and postsynaptic structures. The presynaptic cytomatrix proteins function also in processes other than the formation of a static frame for assembly of the release apparatus and synaptic vesicle cycling. They actively contribute to the regulation of multiple steps in this process and are themselves an important subject of regulation during neuronal plasticity. We are only beginning to understand the mechanisms and signalling pathways controlling these regulations. They are mainly dependent on posttranslational modifications, including phosphorylation and small-molecules conjugation, such as ubiquitination. Ubiquitination of presynaptic proteins might lead to their degradation by proteasomes, but evidence is growing that this modification also affects their function independently of their degradation. Signalling from presynapse to nucleus, which works on a much slower time scale and more globally, emerged as an important mechanism for persistent usage-dependent and homeostatic neuronal plasticity. Recently, two new functions for the largest presynaptic scaffolding proteins bassoon and piccolo emerged. They were implied (1) in the regulation of specific protein ubiquitination and proteasome-mediated proteolysis that potentially contributes to short-term plasticity at the presynapse and (2) in the coupling of activity-induced molecular rearrangements at the presynapse with reprogramming of expression of neuronal activity-regulated genes.

摘要

神经递质的释放是由复杂的多蛋白机制执行的,该机制围绕活跃区的突触前细胞基质组装。这种蛋白质支架的一个公认功能是突触小泡簇的空间组织、执行膜融合和补偿性内吞作用的蛋白质复合物,以及对突触前和突触后结构对齐很重要的跨膜分子。突触前细胞基质蛋白在释放装置组装和突触小泡循环的静态框架形成以外的过程中也发挥作用。它们积极参与这一过程中多个步骤的调节,并且自身也是神经元可塑性过程中调节的重要对象。我们才刚刚开始了解控制这些调节的机制和信号通路。它们主要依赖于翻译后修饰,包括磷酸化和小分子结合,如泛素化。突触前蛋白的泛素化可能导致其被蛋白酶体降解,但越来越多的证据表明,这种修饰也独立于其降解而影响其功能。从突触前到细胞核的信号传导作用于更慢的时间尺度且更具全局性,已成为持续性使用依赖和稳态神经元可塑性的重要机制。最近,最大的突触前支架蛋白巴松管蛋白和短笛蛋白出现了两个新功能。它们被认为(1)在特定蛋白泛素化和蛋白酶体介导的蛋白水解的调节中发挥作用,这可能有助于突触前的短期可塑性;(2)在突触前的活性诱导分子重排与神经元活性调节基因表达的重编程之间起耦合作用。

相似文献

6
Bassoon inhibits proteasome activity via interaction with PSMB4.巴松管通过与 PSMB4 相互作用抑制蛋白酶体活性。
Cell Mol Life Sci. 2021 Feb;78(4):1545-1563. doi: 10.1007/s00018-020-03590-z. Epub 2020 Jul 10.

引用本文的文献

5
The Clinical Implications of Tumor Mutational Burden in Osteosarcoma.骨肉瘤中肿瘤突变负荷的临床意义
Front Oncol. 2021 Apr 7;10:595527. doi: 10.3389/fonc.2020.595527. eCollection 2020.
7
A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision.嗅觉和视觉中使用的初级感觉神经元的比较。
Front Cell Neurosci. 2020 Nov 5;14:595523. doi: 10.3389/fncel.2020.595523. eCollection 2020.

本文引用的文献

2
Presynaptic active zones in invertebrates and vertebrates.无脊椎动物和脊椎动物中的突触前活性区。
EMBO Rep. 2015 Aug;16(8):923-38. doi: 10.15252/embr.201540434. Epub 2015 Jul 9.
5
Macromolecular transport in synapse to nucleus communication.大分子在突触到细胞核通讯中的运输。
Trends Neurosci. 2015 Feb;38(2):108-16. doi: 10.1016/j.tins.2014.12.001. Epub 2014 Dec 19.
10
Presynaptic and postsynaptic scaffolds: dynamics fast and slow.突触前和突触后支架:快慢动力学
Neuroscientist. 2014 Oct;20(5):439-52. doi: 10.1177/1073858414523321. Epub 2014 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验