Department of Biology, Animal Physiology, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany.
Department of Ophthalmology, University Hospital Erlangen, 91054 Erlangen, Germany.
J Neurosci. 2019 Apr 3;39(14):2606-2619. doi: 10.1523/JNEUROSCI.2038-18.2019. Epub 2019 Jan 29.
Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones. Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.
化学突触的活性区是神经递质受调控释放的高度特化部位。尽管脊椎动物的活性区蛋白具有高度的保守性,但每种化学突触都表达了一组特定的蛋白同工型和剪接变体,以适应神经递质释放的需求。到目前为止,我们对特定的活性区蛋白如何有助于活性区的结构和功能多样性知之甚少。在这项研究中,我们通过研究 Piccolo 的特异性剪接变体 Piccolino 在塑造带状结构中的作用,探讨了带状型活性区的纳米域组织。我们跟进了之前的研究结果,该结果表明在 Piccolino 敲低的情况下,棒状光感受器突触带会失去其结构完整性。在这里,我们证明了 Piccolino 与主要的带状成分 RIBEYE 之间的相互作用,该相互作用支持视网膜神经元中的板状突触带。在 Piccolo/Piccolino 缺陷雄性和雌性大鼠的三种不同类型的视网膜带状突触的详细超微结构分析中,我们表明 Piccolino 的缺失会使板状突触带的超结构不稳定,尽管在检查的细胞类型中表现不同。我们的分析说明了特定的活性区蛋白剪接变体(例如 Piccolino)的表达如何有助于脊椎动物活性区的结构多样性。视网膜带状突触是一种特化的化学突触,适应神经递质的快速和紧张释放的调控。视网膜带状突触的标志是板状突触带,它从释放部位延伸到末端的细胞质,并固定数百个突触小泡。在这里,我们表明 Piccolo 的特异性剪接变体 Piccolino 与 RIBEYE 相互作用,RIBEYE 是突触带的主要成分。这种相互作用发生在 Piccolino 的 C 末端的几个 PxDLS 样基序上,这些基序可以连接多个 RIBEYE 分子。Piccolino 的缺失会破坏突触带的特征板状结构,表明 Piccolino 在突触带组装中起作用。