Suppr超能文献

通过RNA测序和核糖体分析对冠状病毒基因表达进行高分辨率分析

High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

作者信息

Irigoyen Nerea, Firth Andrew E, Jones Joshua D, Chung Betty Y-W, Siddell Stuart G, Brierley Ian

机构信息

Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.

Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS Pathog. 2016 Feb 26;12(2):e1005473. doi: 10.1371/journal.ppat.1005473. eCollection 2016 Feb.

Abstract

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.

摘要

冠状病毒科成员拥有所有RNA病毒中最大的基因组,通常在30千碱基左右。几种冠状病毒,如严重急性呼吸综合征相关冠状病毒(SARS-CoV)和中东呼吸综合征相关冠状病毒(MERS-CoV),具有医学重要性,死亡率高,而且就SARS-CoV而言,具有显著的大流行潜力。其他冠状病毒,如猪流行性腹泻病毒和禽冠状病毒,是重要的家畜病原体。核糖体谱分析是一种利用正在翻译的核糖体保护约30个核苷酸的mRNA不被核糖核酸酶消化的能力的技术。核糖体保护的mRNA片段被纯化,进行深度测序,并映射回转录组以给出翻译的全局“快照”。平行RNA测序允许按转录本丰度进行标准化。在这里,我们将核糖体谱分析应用于感染鼠冠状病毒、小鼠肝炎病毒A59株(MHV-A59)的细胞,MHV-A59是与SARS-CoV和MERS-CoV同属的一种模型冠状病毒。获得的数据使我们能够极其精确地研究病毒转录和翻译的动力学。我们研究了正负链基因组和亚基因组病毒RNA产生的时间进程以及不同病毒开放阅读框的相对翻译效率。未发现病毒mRNA比宿主mRNA翻译更有效;相反,由于病毒转录本水平高,病毒翻译在后期时间点主导宿主翻译。谱分析数据的三联体相位允许精确确定翻译的阅读框,并揭示了已知病毒蛋白质编码区域上游或嵌入其中的几个已翻译的短开放阅读框。在病毒复制酶多聚蛋白pp1a开放阅读框中鉴定出核糖体暂停位点并进行了实验研究。与预期相反,未发现核糖体在核糖体移码位点处暂停。据我们所知,这是核糖体谱分析首次应用于RNA病毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9e0/4769073/c03760fd3b60/ppat.1005473.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验