Ganesan Suresh M, Falla Alejandra, Goldfless Stephen J, Nasamu Armiyaw S, Niles Jacquin C
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA.
Nat Commun. 2016 Mar 1;7:10727. doi: 10.1038/ncomms10727.
Synthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA-protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces 'leakiness' to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes.
基因表达的合成转录后调控对于理解基础生物学以及在合成生物学中编程新的细胞过程至关重要。以前在真核生物中调节翻译的策略主要集中在破坏翻译中的各个步骤,包括起始和mRNA切割。在强调模块化和跨生物体功能时,这些系统被设计为与天然控制机制正交运行。在这里,我们通过将小分子调节的RNA-蛋白质模块的合成翻译控制与同时调节细胞RNA命运多个方面的天然机制相结合,引入了一种广泛适用的策略来稳健地控制蛋白质翻译。我们证明,该策略减少了“渗漏”,以提高整体表达动态范围,并且可以在不牺牲模块化和跨生物体功能的情况下实施。我们在酿酒酵母和非模式人类疟原虫恶性疟原虫中对此进行了说明。鉴于可用于恶性疟原虫的功能遗传学工具包有限,我们确立了该策略在定义必需基因方面的实用性。