Suppr超能文献

从半厌氧环境中定向进化出的超快速核酮糖-1,5-二磷酸羧化酶具有抗氧性。

Directed Evolution of an Ultra-Fast Rubisco from a Semi-Anaerobic Environment Imparts Oxygen Resistance.

作者信息

McDonald Julie L, Shapiro Nathan P, Mengiste Amanuella A, Kaines Sarah, Whitney Spencer M, Wilson Robert H, Shoulders Matthew D

出版信息

bioRxiv. 2025 May 5:2025.02.17.638297. doi: 10.1101/2025.02.17.638297.

Abstract

UNLABELLED

Carbon dioxide (CO ) assimilation by the enzyme Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) underpins biomass accumulation in photosynthetic bacteria and eukaryotes. Despite its pivotal role, Rubisco has a slow carboxylation rate and is competitively inhibited by oxygen (O ). These traits impose limitations on photosynthetic efficiency, making Rubisco a compelling target for improvement. Interest in Form II Rubisco from bacteria, which comprise a dimer or hexamer of large subunits, arises from their nearly 5-fold higher than the average Rubisco enzyme. As well as having a fast (25.8 s at 25 °C), we show that Rubisco (GWS1B) is extremely sensitive to O inhibition, consistent with its evolution under semi-anaerobic environments. We therefore used a novel mutagenesis-mediated screening pipeline to evolve GWS1B over six rounds under oxygenic selection, identifying three catalytic point mutants with improved ambient carboxylation efficiency; Thr-29-Ala (T29A), Glu-40-Lys (E40K) and Arg-337-Cys (R337C). Full kinetic characterization showed that each substitution enhanced the CO affinity of GWS1B under oxygenic conditions by subduing oxygen affinity, leading to 25% (E40K), 11% (T29A) and 8% (R337C) enhancements in carboxylation efficiency under ambient O at 25 °C. By contrast, under the near anaerobic natural environment of , the carboxylation efficiency of each mutant was impaired ∼16%. These findings demonstrate the efficacy of artificial directed evolution to access novel regions of catalytic space in Rubisco.

SIGNIFICANCE

Given Rubisco's crucial role in carbon dioxide assimilation, addressing its slow carboxylation rate and oxygen inhibition is a significant challenge. Utilizing one of the fastest known, yet also highly oxygen-sensitive, Rubisco - from the bacteria - we applied a novel directed evolution pipeline in to discover mutations that specifically enhance carboxylation efficiency under ambient oxygen, a condition distinct from natural semi-anaerobic environment. Our findings underscore the potential of directed evolution to unlock new catalytic capabilities for Rubisco, with implications for both fundamental research and practical agricultural applications.

摘要

未标记

1,5 - 二磷酸核酮糖羧化酶/加氧酶(Rubisco)对二氧化碳(CO₂)的同化作用是光合细菌和真核生物中生物量积累的基础。尽管Rubisco具有关键作用,但其羧化速率缓慢且会受到氧气(O₂)的竞争性抑制。这些特性限制了光合效率,使得Rubisco成为一个极具改进潜力的目标。对来自细菌的II型Rubisco(由大亚基的二聚体或六聚体组成)的兴趣源于其活性比普通Rubisco酶高出近5倍。除了具有快速的羧化速率(25℃下为25.8 s⁻¹),我们还发现GWS1B型Rubisco对O₂抑制极为敏感, 这与其在半厌氧环境下的进化过程一致。因此,我们使用了一种新型的诱变介导筛选流程,在有氧选择条件下对GWS1B进行了六轮进化,鉴定出三个具有改善的环境羧化效率的催化点突变体;苏氨酸-29-丙氨酸(T29A)、谷氨酸-40-赖氨酸(E40K)和精氨酸-337-半胱氨酸(R337C)。完整的动力学表征表明,每个取代通过降低对氧气的亲和力,增强了GWS1B在有氧条件下对CO₂的亲和力,导致在25℃的环境O₂条件下羧化效率分别提高了25%(E40K)、11%(T29A)和8%(R337C)。相比之下,在近乎厌氧的自然环境中,每个突变体的羧化效率受损约16%。这些发现证明了人工定向进化在探索Rubisco催化空间新区域方面的有效性。

意义

鉴于Rubisco在二氧化碳同化中的关键作用,解决其羧化速率缓慢和氧气抑制问题是一项重大挑战。我们利用已知速度最快但对氧气也高度敏感的一种Rubisco——来自细菌——在有氧条件下应用了一种新型定向进化流程,以发现能够在环境氧气条件下特异性提高羧化效率的突变,这种条件不同于自然半厌氧环境。我们的发现强调了定向进化在为Rubisco解锁新催化能力方面的潜力,这对基础研究和实际农业应用都具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/12247655/cd2e23c5c37f/nihpp-2025.02.17.638297v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验