Prywes Noam, Phillips Naiya R, Oltrogge Luke M, Lindner Sebastian, Taylor-Kearney Leah J, Tsai Yi-Chin Candace, de Pins Benoit, Cowan Aidan E, Chang Hana A, Wang Renée Z, Hall Laina N, Bellieny-Rabelo Daniel, Nisonoff Hunter M, Weissman Rachel F, Flamholz Avi I, Ding David, Bhatt Abhishek Y, Mueller-Cajar Oliver, Shih Patrick M, Milo Ron, Savage David F
Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA.
Nature. 2025 Feb;638(8051):823-828. doi: 10.1038/s41586-024-08455-0. Epub 2025 Jan 22.
Rubisco is the primary CO-fixing enzyme of the biosphere, yet it has slow kinetics. The roles of evolution and chemical mechanism in constraining its biochemical function remain debated. Engineering efforts aimed at adjusting the biochemical parameters of rubisco have largely failed, although recent results indicate that the functional potential of rubisco has a wider scope than previously known. Here we developed a massively parallel assay, using an engineered Escherichia coli in which enzyme activity is coupled to growth, to systematically map the sequence-function landscape of rubisco. Composite assay of more than 99% of single-amino acid mutants versus CO concentration enabled inference of enzyme velocity and apparent CO affinity parameters for thousands of substitutions. This approach identified many highly conserved positions that tolerate mutation and rare mutations that improve CO affinity. These data indicate that non-trivial biochemical changes are readily accessible and that the functional distance between rubiscos from diverse organisms can be traversed, laying the groundwork for further enzyme engineering efforts.
核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是生物圈中主要的二氧化碳固定酶,但其动力学较慢。进化和化学机制在限制其生化功能方面所起的作用仍存在争议。尽管最近的结果表明Rubisco的功能潜力比以前所知的范围更广,但旨在调整Rubisco生化参数的工程努力大多以失败告终。在这里,我们开发了一种大规模平行检测方法,使用一种经过工程改造的大肠杆菌,其中酶活性与生长相关联,以系统地绘制Rubisco的序列-功能图谱。对超过99%的单氨基酸突变体与二氧化碳浓度进行复合检测,能够推断数千个替代位点的酶促反应速度和表观二氧化碳亲和力参数。这种方法确定了许多耐受突变的高度保守位点以及提高二氧化碳亲和力的罕见突变。这些数据表明,非平凡的生化变化很容易实现,并且不同生物体的Rubisco之间的功能距离可以跨越,为进一步的酶工程努力奠定了基础。