Suppr超能文献

使用决策表/朴素贝叶斯(DTNB)混合分类器对追尾碰撞中驾驶员伤害严重程度进行解释性分析。

An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier.

作者信息

Chen Cong, Zhang Guohui, Yang Jinfu, Milton John C, Alcántara Adélamar Dely

机构信息

Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Accid Anal Prev. 2016 May;90:95-107. doi: 10.1016/j.aap.2016.02.002. Epub 2016 Feb 27.

Abstract

Rear-end crashes are a major type of traffic crashes in the U.S. Of practical necessity is a comprehensive examination of its mechanism that results in injuries and fatalities. Decision table (DT) and Naïve Bayes (NB) methods have both been used widely but separately for solving classification problems in multiple areas except for traffic safety research. Based on a two-year rear-end crash dataset, this paper applies a decision table/Naïve Bayes (DTNB) hybrid classifier to select the deterministic attributes and predict driver injury outcomes in rear-end crashes. The test results show that the hybrid classifier performs reasonably well, which was indicated by several performance evaluation measurements, such as accuracy, F-measure, ROC, and AUC. Fifteen significant attributes were found to be significant in predicting driver injury severities, including weather, lighting conditions, road geometry characteristics, driver behavior information, etc. The extracted decision rules demonstrate that heavy vehicle involvement, a comfortable traffic environment, inferior lighting conditions, two-lane rural roadways, vehicle disabled damage, and two-vehicle crashes would increase the likelihood of drivers sustaining fatal injuries. The research limitations on data size, data structure, and result presentation are also summarized. The applied methodology and estimation results provide insights for developing effective countermeasures to alleviate rear-end crash injury severities and improve traffic system safety performance.

摘要

追尾碰撞事故是美国交通事故的主要类型之一。对其导致人员伤亡的机制进行全面研究很有必要。决策表(DT)和朴素贝叶斯(NB)方法在除交通安全研究之外的多个领域都被广泛且分别用于解决分类问题。基于一个为期两年的追尾碰撞事故数据集,本文应用决策表/朴素贝叶斯(DTNB)混合分类器来选择确定性属性,并预测追尾碰撞事故中驾驶员的受伤结果。测试结果表明,该混合分类器表现良好,这由多个性能评估指标所表明,如准确率、F值、ROC和AUC。发现有15个重要属性在预测驾驶员受伤严重程度方面具有显著性,包括天气、照明条件、道路几何特征、驾驶员行为信息等。提取的决策规则表明,重型车辆的参与、舒适的交通环境、较差的照明条件、双车道乡村道路、车辆损坏以及两车碰撞会增加驾驶员遭受致命伤害的可能性。本文还总结了在数据规模、数据结构和结果呈现方面的研究局限性。所应用的方法和估计结果为制定有效的对策以减轻追尾碰撞事故的受伤严重程度和提高交通系统安全性能提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验