Wang Qingfan, Zhou Qing, Lin Miao, Nie Bingbing
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.
China Automotive Technology & Research Center (CATARC), Tianjin 300399, China.
iScience. 2022 Jun 30;25(8):104703. doi: 10.1016/j.isci.2022.104703. eCollection 2022 Aug 19.
Automated vehicles (AVs) are anticipated to improve road traffic safety. However, prevailing decision-making algorithms have largely neglected the potential to mitigate injuries when confronting inevitable obstacles. To explore whether, how, and to what extent AVs can enhance human protection, we propose an injury risk mitigation-based decision-making algorithm. The algorithm is guided by a real-time, data-driven human injury prediction model and is assessed using detailed first-hand information collected from real-world crashes. The results demonstrate that integrating injury prediction into decision-making is promising for reducing traffic casualties. Because safety decisions involve harm distribution for different participants, we further analyze the potential ethical issues quantitatively, providing a technically critical step closer to settling such dilemmas. This work demonstrates the feasibility of applying mining tools to identify the underlying mechanisms embedded in crash data accumulated over time and opens the way for future AVs to facilitate optimal road traffic safety.
自动驾驶车辆有望提高道路交通安全。然而,目前的决策算法在很大程度上忽略了在面对不可避免的障碍物时减轻伤害的潜力。为了探究自动驾驶车辆能否以及如何在多大程度上增强对人类的保护,我们提出了一种基于减轻伤害风险的决策算法。该算法由一个实时、数据驱动的人类伤害预测模型引导,并使用从真实世界碰撞事故中收集的详细第一手信息进行评估。结果表明,将伤害预测纳入决策对于减少交通伤亡具有前景。由于安全决策涉及不同参与者的伤害分配,我们进一步定量分析了潜在的伦理问题,朝着解决此类困境迈出了技术上关键的一步。这项工作证明了应用挖掘工具来识别随着时间积累的碰撞数据中所蕴含的潜在机制的可行性,并为未来自动驾驶车辆促进最佳道路交通安全开辟了道路。