Suppr超能文献

使用支持向量机模型研究翻车事故中驾驶员的损伤严重程度模式。

Investigating driver injury severity patterns in rollover crashes using support vector machine models.

作者信息

Chen Cong, Zhang Guohui, Qian Zhen, Tarefder Rafiqul A, Tian Zong

机构信息

Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Accid Anal Prev. 2016 May;90:128-39. doi: 10.1016/j.aap.2016.02.011. Epub 2016 Mar 1.

Abstract

Rollover crash is one of the major types of traffic crashes that induce fatal injuries. It is important to investigate the factors that affect rollover crashes and their influence on driver injury severity outcomes. This study employs support vector machine (SVM) models to investigate driver injury severity patterns in rollover crashes based on two-year crash data gathered in New Mexico. The impacts of various explanatory variables are examined in terms of crash and environmental information, vehicle features, and driver demographics and behavior characteristics. A classification and regression tree (CART) model is utilized to identify significant variables and SVM models with polynomial and Gaussian radius basis function (RBF) kernels are used for model performance evaluation. It is shown that the SVM models produce reasonable prediction performance and the polynomial kernel outperforms the Gaussian RBF kernel. Variable impact analysis reveals that factors including comfortable driving environment conditions, driver alcohol or drug involvement, seatbelt use, number of travel lanes, driver demographic features, maximum vehicle damages in crashes, crash time, and crash location are significantly associated with driver incapacitating injuries and fatalities. These findings provide insights for better understanding rollover crash causes and the impacts of various explanatory factors on driver injury severity patterns.

摘要

翻车事故是导致致命伤害的主要交通事故类型之一。调查影响翻车事故的因素及其对驾驶员伤害严重程度结果的影响非常重要。本研究采用支持向量机(SVM)模型,基于在新墨西哥州收集的两年事故数据,调查翻车事故中驾驶员的伤害严重程度模式。从事故和环境信息、车辆特征以及驾驶员人口统计学和行为特征等方面,考察了各种解释变量的影响。利用分类回归树(CART)模型识别显著变量,并使用具有多项式和高斯径向基函数(RBF)核的支持向量机模型进行模型性能评估。结果表明,支持向量机模型具有合理的预测性能,且多项式核优于高斯RBF核。变量影响分析表明,舒适的驾驶环境条件、驾驶员饮酒或吸毒、安全带使用情况、行车道数量、驾驶员人口统计学特征、事故中车辆的最大损坏程度、事故时间和事故地点等因素与驾驶员致残伤害和死亡显著相关。这些发现为更好地理解翻车事故原因以及各种解释因素对驾驶员伤害严重程度模式的影响提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验