Suppr超能文献

蘑菇利用对流产生的气流来散播它们的孢子。

Mushrooms use convectively created airflows to disperse their spores.

作者信息

Dressaire Emilie, Yamada Lisa, Song Boya, Roper Marcus

机构信息

Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201;

Department of Engineering, Trinity College, Hartford, CT 06106;

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2833-8. doi: 10.1073/pnas.1509612113. Epub 2016 Feb 29.

Abstract

Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs.

摘要

数以千计的担子菌真菌物种依靠蘑菇孢子在各处传播。长期以来,人们一直认为孢子依靠适宜的风来扩散——亲本真菌对孢子扩散的主动控制仅限于给孢子一个冲力,使其离开菌褶表面。我们在此表明,菌盖周围空气的蒸发冷却会产生对流气流,能够以每秒几厘米的速度携带孢子。对流单元可以从可能只有1厘米高的间隙中运输孢子,并将孢子提升到空中10厘米或更高的高度。这项研究揭示了蘑菇如何耐受甚至受益于拥挤状况,并解释了它们对水的高需求。

相似文献

1
Mushrooms use convectively created airflows to disperse their spores.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2833-8. doi: 10.1073/pnas.1509612113. Epub 2016 Feb 29.
2
Do small spores disperse further than large spores?
Ecology. 2014 Jun;95(6):1612-21. doi: 10.1890/13-0877.1.
3
The captured launch of a ballistospore.
Mycologia. 2005 Jul-Aug;97(4):866-71. doi: 10.3852/mycologia.97.4.866.
4
Dispersal of fungal spores on a cooperatively generated wind.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17474-9. doi: 10.1073/pnas.1003577107. Epub 2010 Sep 28.
5
Adaptation of the spore discharge mechanism in the basidiomycota.
PLoS One. 2009;4(1):e4163. doi: 10.1371/journal.pone.0004163. Epub 2009 Jan 8.
6
Vortex-induced dispersal of a plant pathogen by raindrop impact.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4917-4922. doi: 10.1073/pnas.1820318116. Epub 2019 Feb 25.
7
Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs.
Mycologia. 2005 Jul-Aug;97(4):762-9. doi: 10.3852/mycologia.97.4.762.
9
Goldilocks mushrooms: How ballistospory has shaped basidiomycete evolution.
Fungal Biol. 2023 Apr;127(4):975-984. doi: 10.1016/j.funbio.2023.02.004. Epub 2023 Mar 9.
10
Surface tension propulsion of fungal spores.
J Exp Biol. 2009 Sep 1;212(17):2835-43. doi: 10.1242/jeb.029975.

引用本文的文献

2
Diurnal Release of Airborne Pathogen Spores in Greenhouses via the Synergistic Effects of Relative Humidity and Wind.
Adv Sci (Weinh). 2025 Jul;12(25):e2501500. doi: 10.1002/advs.202501500. Epub 2025 May 11.
3
Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation.
Arch Microbiol. 2025 Jan 21;207(2):38. doi: 10.1007/s00203-024-04220-z.
4
Coherent spore dispersion via drop-leaf interaction.
Sci Adv. 2024 Feb 2;10(5):eadj8092. doi: 10.1126/sciadv.adj8092. Epub 2024 Jan 31.
5
Manipulation of Convection Using Infrared Light Emitted from Human Hands.
Adv Sci (Weinh). 2024 Mar;11(12):e2307020. doi: 10.1002/advs.202307020. Epub 2024 Jan 18.
6
Lessons on fruiting body morphogenesis from genomes and transcriptomes of .
Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31.
7
The hypothermic nature of fungi.
Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2221996120. doi: 10.1073/pnas.2221996120. Epub 2023 May 2.
8
Distinct response patterns of plants and soil microorganisms to agronomic practices and seasonal variation in a floodplain ecosystem.
Front Microbiol. 2023 Jan 26;14:1094750. doi: 10.3389/fmicb.2023.1094750. eCollection 2023.
9
Risk assessment of fungal materials.
Fungal Biol Biotechnol. 2022 Feb 24;9(1):3. doi: 10.1186/s40694-022-00134-x.
10
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis.
Microbiol Mol Biol Rev. 2022 Mar 16;86(1):e0001921. doi: 10.1128/MMBR.00019-21. Epub 2021 Nov 24.

本文引用的文献

1
Do small spores disperse further than large spores?
Ecology. 2014 Jun;95(6):1612-21. doi: 10.1890/13-0877.1.
2
Nuclear dynamics in a fungal chimera.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12875-80. doi: 10.1073/pnas.1220842110. Epub 2013 Jul 16.
3
A natural O-ring optimizes the dispersal of fungal spores.
J R Soc Interface. 2013 Jun 19;10(85):20130187. doi: 10.1098/rsif.2013.0187. Print 2013 Aug 6.
4
Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules.
Mol Ecol. 2012 Aug;21(16):4122-36. doi: 10.1111/j.1365-294X.2012.05666.x. Epub 2012 Jun 15.
5
95% of basidiospores fall within 1 m of the cap: a field-and modeling-based study.
Mycologia. 2011 Nov-Dec;103(6):1175-83. doi: 10.3852/10-388. Epub 2011 Jun 23.
6
Why mushrooms form gills: efficiency of the lamellate morphology.
Fungal Biol. 2010 Jan;114(1):57-63. doi: 10.1016/j.mycres.2009.10.006. Epub 2009 Oct 31.
7
Dispersal of fungal spores on a cooperatively generated wind.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17474-9. doi: 10.1073/pnas.1003577107. Epub 2010 Sep 28.
9
Sphagnum moss disperses spores with vortex rings.
Science. 2010 Jul 23;329(5990):406. doi: 10.1126/science.1190179.
10
Long-distance dispersion of rust pathogens.
Annu Rev Phytopathol. 1990;28:139-53. doi: 10.1146/annurev.py.28.090190.001035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验