Suppr超能文献

对来自印度西北部的大量文盲老年人群进行事后主成分分析,以确定简易精神状态检查表的重要因素。

Post-hoc principal component analysis on a largely illiterate elderly population from North-west India to identify important elements of mini-mental state examination.

作者信息

Raina Sunil Kumar, Chander Vishav, Raina Sujeet, Grover Ashoo

机构信息

Department of Community Medicine, Dr. R. P. Government Medical College, Tanda, Himachal Pradesh, India.

Department of Medicine, Dr. R. P. Government Medical College, Tanda, Himachal Pradesh, India.

出版信息

J Neurosci Rural Pract. 2016 Jan-Mar;7(1):44-7. doi: 10.4103/0976-3147.172153.

Abstract

BACKGROUND

Mini-mental state examination (MMSE) scale measures cognition using specific elements that can be isolated, defined, and subsequently measured. This study was conducted with the aim to analyze the factorial structure of MMSE in a largely, illiterate, elderly population in India and to reduce the number of variables to a few meaningful and interpretable combinations.

METHODOLOGY

Principal component analysis (PCA) was performed post-hoc on the data generated by a research project conducted to estimate the prevalence of dementia in four geographically defined habitations in Himachal Pradesh state of India.

RESULTS

Questions on orientation and registration account for high percentage of cumulative variance in comparison to other questions.

DISCUSSION

The PCA conducted on the data derived from a largely, illiterate population reveals that the most important components to consider for the estimation of cognitive impairment in illiterate Indian population are temporal orientation, spatial orientation, and immediate memory.

摘要

背景

简易精神状态检查表(MMSE)量表通过可分离、定义并随后测量的特定要素来衡量认知。本研究旨在分析印度大量文盲老年人群中MMSE的因子结构,并将变量数量减少到一些有意义且可解释的组合。

方法

对印度喜马偕尔邦四个地理区域居住点进行的一项估计痴呆患病率的研究项目所产生的数据进行事后主成分分析(PCA)。

结果

与其他问题相比,定向和登记方面的问题在累积方差中占比很高。

讨论

对来自大量文盲人群的数据进行的主成分分析表明,对于文盲印度人群认知障碍评估而言,最重要的要素是时间定向、空间定向和即刻记忆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a62/4750338/3e652b382503/JNRP-7-44-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验