Deguchi Takahiro, Alanne Maria H, Fazeli Elnaz, Fagerlund Katja M, Pennanen Paula, Lehenkari Petri, Hänninen Pekka E, Peltonen Juha, Näreoja Tuomas
Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, Turku, Finland.
Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
Sci Rep. 2016 Mar 3;6:22585. doi: 10.1038/srep22585.
To elucidate processes in the osteoclastic bone resorption, visualise resorption and related actin reorganisation, a combination of imaging technologies and an applicable in vitro model is needed. Nanosized bone powder from matching species is deposited on any biocompatible surface in order to form a thin, translucent, smooth and elastic representation of injured bone. Osteoclasts cultured on the layer expressed matching morphology to ones cultured on sawed cortical bone slices. Resorption pits were easily identified by reflectance microscopy. The coating allowed actin structures on the bone interface to be visualised with super-resolution microscopy along with a detailed interlinked actin networks and actin branching in conjunction with V-ATPase, dynamin and Arp2/3 at actin patches. Furthermore, we measured the timescale of an adaptive osteoclast adhesion to bone by force spectroscopy experiments on live osteoclasts with bone-coated AFM cantilevers. Utilising the in vitro model and the advanced imaging technologies we localised immunofluorescence signals in respect to bone with high precision and detected resorption at its early stages. Put together, our data supports a cyclic model for resorption in human osteoclasts.
为了阐明破骨细胞骨吸收过程,可视化骨吸收及相关肌动蛋白重组,需要结合成像技术和适用的体外模型。来自匹配物种的纳米级骨粉沉积在任何生物相容性表面上,以形成受损骨的薄、半透明、光滑且有弹性的表征。在该层上培养的破骨细胞表现出与在锯切的皮质骨切片上培养的破骨细胞相匹配的形态。通过反射显微镜很容易识别出吸收坑。该涂层使得能够用超分辨率显微镜观察骨界面上的肌动蛋白结构,以及详细的相互连接的肌动蛋白网络和肌动蛋白分支,同时还能观察到肌动蛋白斑块处的V-ATP酶、发动蛋白和Arp2/3。此外,我们通过使用涂有骨的原子力显微镜悬臂对活破骨细胞进行力谱实验,测量了破骨细胞对骨的适应性黏附的时间尺度。利用体外模型和先进的成像技术,我们高精度地定位了相对于骨的免疫荧光信号,并在早期阶段检测到了骨吸收。综上所述,我们的数据支持人类破骨细胞骨吸收的循环模型。