Suppr超能文献

基于肺叶的气道自动标注。

Automated lobe-based airway labeling.

作者信息

Gu Suicheng, Wang Zhimin, Siegfried Jill M, Wilson David, Bigbee William L, Pu Jiantao

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Int J Biomed Imaging. 2012;2012:382806. doi: 10.1155/2012/382806. Epub 2012 Oct 9.

Abstract

Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm.

摘要

气道形态异常的区域定量分析在肺部疾病研究中具有重要意义。鉴于肺叶是相对独立的功能单元,我们在本研究中开发并测试了一种新颖且高效的计算机化方案,以根据肺叶将气道自动且稳健地分类为不同类别。给定一个可以使用任何可用气道分割方案获得的气道树,所开发的方法包括四个基本步骤:(1)气道骨架化或中心线提取,(2)单个气道分支识别,(3)基于规则的初始气道分类/标记,以及(4)标记错误的自我校正。为了评估该方法的性能,我们将其批量应用于由300例胸部CT检查组成的数据集,并让一名图像分析师主观检查标记结果。我们的初步实验表明,右上叶、右中叶、右下叶、左上叶和左下叶的标记准确率分别为100%、99.3%、99.3%、100%和100%。其中,仅两例因气道检测失败而标记错误。使用该算法标记一个气道树大约需要2分钟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae96/3474277/74a149f281b3/IJBI2012-382806.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验