Beran Franziska, Rahfeld Peter, Luck Katrin, Nagel Raimund, Vogel Heiko, Wielsch Natalie, Irmisch Sandra, Ramasamy Srinivasan, Gershenzon Jonathan, Heckel David G, Köllner Tobias G
Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2922-7. doi: 10.1073/pnas.1523468113. Epub 2016 Mar 2.
Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.
倍半萜在昆虫通讯中发挥着重要作用,例如作为信息素。然而,迄今为止,尚未在昆虫中鉴定出参与构建基本碳骨架的酶——倍半萜合酶。我们研究了十字花科跳甲Phyllotreta striolata中倍半萜(6R,7S)-喜马拉雅-9,11-二烯的生物合成,该化合物先前在几种Phyllotreta物种中被鉴定为雄性产生的聚集信息素。在甲虫粗蛋白提取物中检测到了产生(6R,7S)-喜马拉雅-9,11-二烯的倍半萜合酶活性,但只有当提供(Z,E)-法呢基二磷酸[(Z,E)-FPP]作为底物时才会出现。在条纹菜跳甲的转录组中未发现与植物、真菌或细菌的倍半萜合酶相似的序列,但我们鉴定出了9个不同的推定反式异戊二烯基二磷酸合酶(trans-IDS)转录本。其中4个推定的trans-IDS在异源表达时表现出萜类合酶(TPS)活性。重组PsTPS1将(Z,E)-FPP转化为(6R,7S)-喜马拉雅-9,11-二烯以及在甲虫提取物中观察到的其他倍半萜。RNA干扰介导的条纹菜跳甲雄性中PsTPS1 mRNA的敲低导致聚集信息素的释放减少,证实了PsTPS1在信息素生物合成中的重要作用。两种表达的酶表现出真正的IDS活性,PsIDS1合成(E,E)-FPP,而PsIDS3产生香叶基二磷酸、(Z,Z)-FPP和(Z,E)-FPP。在系统发育分析中,PsTPS酶和PsIDS3与包括PsIDS1和PsIDS2在内的已知鞘翅目反式IDS酶分支明显分开。然而,条纹菜跳甲中IDS和TPS基因的外显子-内含子结构是保守的,这表明这个TPS基因家族是从反式IDS祖先进化而来的。