Suppr超能文献

用于鉴定人类气道转录组中SNP和INDEL模式的二代测序元数据分析:肺癌的初步指标

NGS meta data analysis for identification of SNP and INDEL patterns in human airway transcriptome: A preliminary indicator for lung cancer.

作者信息

B Sathya, Dharshini Akila Parvathy, Kumar Gopal Ramesh

机构信息

Department of Bioinformatics, School of Bio Engineering, SRM University, Chennai 603203, India.

Department of Bioinformatics, AU KBC Research Centre, Anna University, MIT Campus, Chennai 600044, India.

出版信息

Appl Transl Genom. 2014 Dec 24;4:4-9. doi: 10.1016/j.atg.2014.12.003. eCollection 2015 Mar.

Abstract

High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. It is also an efficient way to discover coding SNPs and when multiple individuals with different genetic backgrounds were used, RNA-Seq is very effective for the identification of SNPs. The objective of this study was to perform SNP and INDEL discoveries in human airway transcriptome of healthy never smokers, healthy current smokers, smokers without lung cancer and smokers with lung cancer. By preliminary comparative analysis of these four data sets, it is expected to get SNP and INDEL patterns responsible for lung cancer. A total of 85,028 SNPs and 5738 INDELs in healthy never smokers, 32,671 SNPs and 1561 INDELs in healthy current smokers, 50,205 SNPs and 3008 INDELs in smokers without lung cancer and 51,299 SNPs and 3138 INDELs in smokers with lung cancer were identified. The analysis of the SNPs and INDELs in genes that were reported earlier as differentially expressed was also performed. It has been found that a smoking person has SNPs at position 62,186,542 and 62,190,293 in SCGB1A1 gene and 180,017,251, 180,017,252, and 180,017,597 in SCGB3A1 gene and INDELs at position 35,871,168 in NFKBIA gene and 180,017,797 in SCGB3A1 gene. The SNPs identified in this study provides a resource for genetic studies in smokers and shall contribute to the development of a personalized medicine. This study is only a preliminary kind and more vigorous data analysis and wet lab validation are required.

摘要

RNA高通量测序(RNA-Seq)主要用于分析不同组织中的整体基因表达。它也是发现编码单核苷酸多态性(SNP)的有效方法,当使用多个具有不同遗传背景的个体时,RNA-Seq对于SNP的鉴定非常有效。本研究的目的是在健康从不吸烟者、健康当前吸烟者、无肺癌吸烟者和有肺癌吸烟者的人类气道转录组中进行SNP和插入缺失(INDEL)的发现。通过对这四个数据集的初步比较分析,有望获得导致肺癌的SNP和INDEL模式。在健康从不吸烟者中鉴定出85,028个SNP和5738个INDEL,在健康当前吸烟者中鉴定出32,671个SNP和1561个INDEL,在无肺癌吸烟者中鉴定出50,205个SNP和3008个INDEL,在有肺癌吸烟者中鉴定出51,299个SNP和3138个INDEL。还对先前报道为差异表达的基因中的SNP和INDEL进行了分析。已发现吸烟者在SCGB1A1基因的62,186,542和62,190,293位置有SNP,在SCGB3A1基因的180,017,251、180,017,252和180,017,597位置有SNP,在NFKBIA基因的35,871,168位置和SCGB3A1基因的180,017,797位置有INDEL。本研究中鉴定出的SNP为吸烟者的遗传研究提供了资源,并将有助于个性化医学的发展。本研究只是初步的,需要更深入的数据分析和湿实验室验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a4/4745382/9f299139f980/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验