Wang Qian, Pettitt B Montgomery
Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555-0304, United States.
J Phys Chem Lett. 2016 Mar 17;7(6):1042-6. doi: 10.1021/acs.jpclett.6b00246. Epub 2016 Mar 7.
Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence.
理解DNA分子序列如何影响其动态特性是一个影响生物化学和生物技术的核心问题。短DNA环化过程作为分子克隆中的关键步骤,缺乏包含序列信息的动力学过程的全面图景。我们通过使用粗粒度模拟、增强采样方法和最新的理论进展阐明了这一过程。我们能够在碱基对水平上识别环化过程中结构缺陷的类型和位置。沿着DNA分子的相关性决定了可能影响环化速率的关键序列位置。结构缺陷使DNA分子相对于弯曲角度的弯曲弹性从简谐势变为亚谐势。我们探索亚弹性链作为环化形成动力学的一种可能模型。开发了一个序列依赖模型来定性预测作为DNA序列函数的相对环化形成时间。