Suppr超能文献

用于逆向工程基因调控局部因果通路的主动学习因果发现方法评估

An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation.

作者信息

Ma Sisi, Kemmeren Patrick, Aliferis Constantin F, Statnikov Alexander

机构信息

Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, USA.

Molecular Cancer Research, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.

出版信息

Sci Rep. 2016 Mar 4;6:22558. doi: 10.1038/srep22558.

Abstract

Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods' performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost.

摘要

逆向工程涉及疾病和重要细胞功能的因果途径是生物医学中的一个基本问题。发现目标变量的局部因果途径(由其直接原因和直接效应组成)对于有效干预至关重要,并且有助于准确的诊断和预后。最近的研究提供了几种主动学习方法,这些方法可以利用被动观察到的高通量数据来绘制因果途径,然后通过有限数量的实验来完善推断出的关系。当前的研究对主动学习方法在真实生物数据中发现局部因果途径的性能进行了全面评估。具体而言,来自3个算法家族的54种主动学习方法/变体被应用于酿酒酵母中5种转录因子的基因调控局部因果途径重建。评估了这些方法性能的四个方面,包括邻接发现质量、边定向准确性、完整途径发现质量和实验成本。这项研究的结果表明,一些方法比其他方法具有显著的性能优势,因此应常规用于局部因果途径发现任务。这项研究还证明了在真实生物系统中以高质量和低实验成本进行局部因果途径重建的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ce/4778024/023b0b63852f/srep22558-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验