Heiny Markus, Shastri V Prasad
Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg , Stefan-Meier Str. 31, 79104 Freiburg, Germany.
BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestr. 18, 79104 Freiburg, Germany.
Biomacromolecules. 2016 Apr 11;17(4):1312-20. doi: 10.1021/acs.biomac.5b01681. Epub 2016 Mar 11.
Combining mechanical properties with enhanced cell interaction is highly desirable in a biomaterial. In this study, a new paradigm for enhancing the mechanical properties of segmented polyurethanes (SPUs) through solution blending with a biopolymer is presented. This noncovalent approach is based on the premise that molecular level blending of SPUs rich in hydrogen bonding (H bonding) domains with a biopolymer capable of H bonding will promote H-bond bridges between the components, leading to molecular annealing and modification of the physicochemical properties of the SPU. We demonstrate that by solution-blending solubilized elastin with a triblock copolymer-derived SPU, a 5-fold increase in tensile modulus of electrospun constructs of the SPU can be achieved, with concomitant enhancement in human endothelial cell attachment. Spectroscopic and calorimetric analysis confirm the role of H bonding in the enhancement, thus providing the impetus to further explore blending with biopolymers as a means of improving the property profiles of synthetic polymeric biomaterials.
在生物材料中,将机械性能与增强的细胞相互作用相结合是非常理想的。在本研究中,提出了一种通过与生物聚合物溶液共混来增强嵌段聚氨酯(SPU)机械性能的新范例。这种非共价方法基于这样一个前提:富含氢键(H键)域的SPU与能够形成H键的生物聚合物在分子水平上的共混将促进组分之间的H键桥接,从而导致分子退火和SPU物理化学性质的改变。我们证明,通过将溶解的弹性蛋白与三嵌段共聚物衍生的SPU进行溶液共混,可以使SPU的电纺构建体的拉伸模量提高5倍,同时增强人内皮细胞的附着。光谱和量热分析证实了H键在增强过程中的作用,从而为进一步探索与生物聚合物共混作为改善合成聚合物生物材料性能的一种手段提供了动力。