Suppr超能文献

基于24小时腕部加速度计检测行为周期性及其与心脏代谢风险和健康相关生活质量的关联

Behavioral Periodicity Detection from 24 h Wrist Accelerometry and Associations with Cardiometabolic Risk and Health-Related Quality of Life.

作者信息

Buman Matthew P, Hu Feiyan, Newman Eamonn, Smeaton Alan F, Epstein Dana R

机构信息

Arizona State University, Phoenix, AZ 85004, USA.

Dublin City University, Dublin, Ireland.

出版信息

Biomed Res Int. 2016;2016:4856506. doi: 10.1155/2016/4856506. Epub 2016 Jan 31.

Abstract

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35-65) continuously for 64.4 ± 26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (r's = 0.40-0.79, P's < 0.05) and triglycerides (r's = 0.68-0.86, P's < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

摘要

在许多人类行为中都观察到了周期性(重复模式)。它们的强度可能捕捉到未被挖掘的模式,这些模式将睡眠、久坐和活跃行为整合到一个单一指标中,表明健康状况更佳。我们提出了一个从纵向腕部佩戴的加速度计数据中检测周期性的框架。从20名参与者(17名男性,3名女性,年龄35 - 65岁)连续64.4±26.2(范围:13.9至102.0)天持续收集GENEActiv加速度计数据。在基线时评估心血管代谢风险生物标志物和健康相关生活质量指标。构建周期图以确定加速度计数据中出现的模式。使用时间滞后窗口的循环自相关计算周期性强度。最显著的周期性是在24小时,表明昼夜休息 - 活动周期;然而,其强度在参与者之间有显著差异。即使在调整了人口统计学、自我报告的身体活动和失眠症状后,周期性强度与低密度脂蛋白胆固醇(r值 = 0.40 - 0.79,P值 < 0.05)和甘油三酯(r值 = 0.68 - 0.86,P值 < 0.05)最一致相关,但也与超敏C反应蛋白和健康相关生活质量相关。我们的框架展示了一种纵向表征行为模式的新方法,该方法捕捉了24小时加速度计数据与健康结果之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/4752978/4b8c1e5bb1eb/BMRI2016-4856506.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验