Suppr超能文献

与分化簇98重链(CD98hc)相关的氨基酸转运处于氧化应激和氨基酸可用性的交叉点。

Amino Acid Transport Associated to Cluster of Differentiation 98 Heavy Chain (CD98hc) Is at the Cross-road of Oxidative Stress and Amino Acid Availability.

作者信息

de la Ballina Laura R, Cano-Crespo Sara, González-Muñoz Elena, Bial Susanna, Estrach Soline, Cailleteau Laurence, Tissot Floriane, Daniel Hannelore, Zorzano Antonio, Ginsberg Mark H, Palacín Manuel, Féral Chloé C

机构信息

From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France,

From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, Spanish Biomedical Research Network in Rare Diseases (CIBERER U-731), 08028 Barcelona, Spain.

出版信息

J Biol Chem. 2016 Apr 29;291(18):9700-11. doi: 10.1074/jbc.M115.704254. Epub 2016 Mar 5.

Abstract

CD98hc functions as an amino acid (AA) transporter (together with another subunit) and integrin signaling enhancer. It is overexpressed in highly proliferative cells in both physiological and pathological conditions. CD98hc deletion induces strong impairment of cell proliferation in vivo and in vitro Here, we investigate CD98hc-associated AA transport in cell survival and proliferation. By using chimeric versions of CD98hc, the two functions of the protein can be uncoupled. Although recovering the CD98hc AA transport capacity restores the in vivo and in vitro proliferation of CD98hc-null cells, reconstitution of the integrin signaling function of CD98hc is unable to restore in vitro proliferation of those cells. CD98hc-associated transporters (i.e. xCT, LAT1, and y(+)LAT2 in wild-type cells) are crucial to control reactive oxygen species and intracellular AA levels, thus sustaining cell survival and proliferation. Moreover, in CD98hc-null cells the deficiency of CD98hc/xCT cannot be compensated, leading to cell death by ferroptosis. Supplementation of culture media with β-mercaptoethanol rescues CD98hc-deficient cell survival. Under such conditions null cells show oxidative stress and intracellular AA imbalance and, consequently, limited proliferation. CD98hc-null cells also present reduced intracellular levels of branched-chain and aromatic amino acids (BCAAs and ARO AAs, respectively) and induced expression of peptide transporter 1 (PEPT1). Interestingly, external supply of dipeptides containing BCAAs and ARO AAs rescues cell proliferation and compensates for impaired uptake of CD98hc/LAT1 and CD98hc/y(+)LAT2. Our data establish CD98hc as a master protective gene at the cross-road of redox control and AA availability, making it a relevant therapeutic target in cancer.

摘要

CD98重链作为一种氨基酸(AA)转运体(与另一个亚基共同作用)和整合素信号增强子发挥作用。在生理和病理条件下,它在高增殖细胞中均有过表达。CD98重链缺失在体内和体外均会强烈损害细胞增殖。在此,我们研究与CD98重链相关的AA转运在细胞存活和增殖中的作用。通过使用CD98重链的嵌合变体,该蛋白的两种功能可以解偶联。尽管恢复CD98重链的AA转运能力可恢复CD98重链缺失细胞的体内和体外增殖,但重建CD98重链的整合素信号功能却无法恢复这些细胞的体外增殖。与CD98重链相关的转运体(即野生型细胞中的xCT、LAT1和y(+)LAT2)对于控制活性氧和细胞内AA水平至关重要,从而维持细胞存活和增殖。此外,在CD98重链缺失的细胞中,CD98重链/xCT的缺陷无法得到补偿,导致细胞因铁死亡而死亡。用β-巯基乙醇补充培养基可挽救CD98重链缺陷细胞的存活。在这种条件下,缺失细胞表现出氧化应激和细胞内AA失衡,因此增殖受限。CD98重链缺失的细胞还呈现出细胞内支链和芳香族氨基酸(分别为BCAAs和ARO AAs)水平降低以及肽转运体1(PEPT1)表达上调。有趣的是,外部供应含BCAAs和ARO AAs的二肽可挽救细胞增殖并补偿CD98重链/LAT1和CD98重链/y(+)LAT2摄取受损的情况。我们的数据确立了CD98重链作为氧化还原控制和AA可用性交叉点上的主要保护基因,使其成为癌症治疗的相关靶点。

相似文献

2
Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids.
J Am Soc Nephrol. 2018 Jun;29(6):1624-1635. doi: 10.1681/ASN.2017111205. Epub 2018 Apr 2.
4
5
CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression.
Sci Rep. 2019 Oct 1;9(1):14065. doi: 10.1038/s41598-019-50547-9.
6
The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity.
Clin Cancer Res. 2019 May 15;25(10):3152-3163. doi: 10.1158/1078-0432.CCR-18-2951. Epub 2019 Jan 22.
7
Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger.
Pflugers Arch. 2007 Jun;454(3):507-16. doi: 10.1007/s00424-007-0209-3. Epub 2007 Feb 2.
10
Small molecule inhibitors provide insights into the relevance of LAT1 and LAT2 in materno-foetal amino acid transport.
J Cell Mol Med. 2020 Nov;24(21):12681-12693. doi: 10.1111/jcmm.15840. Epub 2020 Oct 1.

引用本文的文献

2
Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in Citrin Deficiency.
bioRxiv. 2024 Dec 27:2024.12.27.630525. doi: 10.1101/2024.12.27.630525.
3
The impact of ferroptosis and ferroptosis-related non-coding RNAs on breast cancer progression.
Front Cell Dev Biol. 2024 Dec 23;12:1506492. doi: 10.3389/fcell.2024.1506492. eCollection 2024.
4
Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview.
Int J Mol Sci. 2024 Aug 23;25(17):9178. doi: 10.3390/ijms25179178.
6
CD98 heavy chain as a prognostic biomarker and target for cancer treatment.
Front Oncol. 2023 Sep 26;13:1251100. doi: 10.3389/fonc.2023.1251100. eCollection 2023.
7
Therapeutic Promises of Plant Metabolites against Monkeypox Virus: An In Silico Study.
Adv Virol. 2023 Sep 2;2023:9919776. doi: 10.1155/2023/9919776. eCollection 2023.
8
Targeting N-glycosylation of 4F2hc mediated by glycosyltransferase B3GNT3 sensitizes ferroptosis of pancreatic ductal adenocarcinoma.
Cell Death Differ. 2023 Aug;30(8):1988-2004. doi: 10.1038/s41418-023-01188-z. Epub 2023 Jul 21.
9
Erythroid SLC7A5/SLC3A2 amino acid carrier controls red blood cell size and maturation.
iScience. 2022 Dec 5;26(1):105739. doi: 10.1016/j.isci.2022.105739. eCollection 2023 Jan 20.
10
The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: Physiological and pathophysiological implications.
Basic Clin Pharmacol Toxicol. 2023 Nov;133(5):459-472. doi: 10.1111/bcpt.13821. Epub 2022 Dec 13.

本文引用的文献

1
The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics.
Biochem Soc Trans. 2015 Aug;43(4):602-10. doi: 10.1042/BST20150003. Epub 2015 Aug 3.
3
The expanding role of mTOR in cancer cell growth and proliferation.
Mutagenesis. 2015 Mar;30(2):169-76. doi: 10.1093/mutage/geu045.
4
Nutrient-sensing mechanisms and pathways.
Nature. 2015 Jan 15;517(7534):302-10. doi: 10.1038/nature14190.
5
Metabolism. Differential regulation of mTORC1 by leucine and glutamine.
Science. 2015 Jan 9;347(6218):194-8. doi: 10.1126/science.1259472. Epub 2015 Jan 7.
6
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.
Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.
7
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
Nature. 2015 Mar 26;519(7544):477-81. doi: 10.1038/nature14107. Epub 2015 Jan 7.
8
mTOR signaling in cellular and organismal energetics.
Curr Opin Cell Biol. 2015 Apr;33:55-66. doi: 10.1016/j.ceb.2014.12.001. Epub 2014 Dec 31.
10
CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction.
Cancer Res. 2014 Dec 1;74(23):6878-89. doi: 10.1158/0008-5472.CAN-14-0579. Epub 2014 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验