Suppr超能文献

SART任务表现的注意力 lapse 理论和运动解耦理论并非相互排斥。

The Attention-Lapse and Motor Decoupling accounts of SART performance are not mutually exclusive.

作者信息

Seli Paul

机构信息

Department of Psychology, Harvard University, Cambridge, MA, USA.

出版信息

Conscious Cogn. 2016 Apr;41:189-98. doi: 10.1016/j.concog.2016.02.017. Epub 2016 Mar 3.

Abstract

There is an ongoing debate about the mechanisms purported to underlie performance in the Sustained-Attention-to-Response Task (SART). Whereas the Attention-Lapse account posits that SART errors result from attentional disengagement, the Motor Decoupling account proposes that SART errors result from failures to inhibit a fast, prepotent motor response, despite adequate attention to the task. That SART performance might be fully accounted for by motor decoupling is problematic for a Attention-Lapse account, and for the use of the SART as an index of attention lapses. To test whether SART performance is in fact fully accounted for by motor decoupling, I examined the relation between SART performance and attention lapses while controlling for motor decoupling. The results were clear: The SART was associated with attention lapses independently of motor decoupling. Thus, the present study suggests that both accounts are correct and that the SART is a valid measure of attention lapses.

摘要

关于持续注意反应任务(SART)中表现背后的机制,目前存在着一场争论。注意力分散假说认为,SART错误是由注意力脱离引起的;而运动解耦假说则提出,SART错误是由于尽管对任务有足够的注意力,但未能抑制快速的优势运动反应所致。运动解耦可能完全解释SART表现,这对于注意力分散假说以及将SART用作注意力分散指标来说是个问题。为了测试SART表现是否实际上完全由运动解耦来解释,我在控制运动解耦的同时,研究了SART表现与注意力分散之间的关系。结果很明确:SART与注意力分散相关,且与运动解耦无关。因此,本研究表明这两种假说都是正确的,并且SART是注意力分散的有效测量指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验