University of Canterbury, Chirstchurch, New Zealand.
Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA, 22030, USA.
Exp Brain Res. 2024 Aug;242(8):2033-2040. doi: 10.1007/s00221-024-06885-w. Epub 2024 Jul 3.
Researchers dispute the cause of errors in high Go, low No Go target detection tasks, like the Sustained Attention to Response Task (SART). Some researchers propose errors in the SART are due to perceptual decoupling, where a participant is unaware of stimulus identity. This lack of external awareness causes an erroneous response. Other researchers suggest the majority of the errors in the SART are instead due to response leniency, not perceptual decoupling. Response delays may enable a participant who is initially unaware of stimulus identity, perceptually decoupled, to become aware of stimulus identity, or perceptually recoupled. If, however, the stimulus presentation time is shortened to the minimum necessary for stimulus recognition and the stimulus is disrupted with a structured mask, then there should be no time to enable perception to recouple even with a response delay. From the perceptual decoupling perspective, there should be no impact of a response delay on performance in this case. Alternatively if response bias is critical, then even in this case a response delay may impact performance. In this study, we shortened stimulus presentation time and added a structured mask. We examined whether a response delay impacted performance in the SART and tasks where the SART's response format was reversed. We expected a response delay would only impact signal detection theory bias, c, in the SART, where response leniency is an issue. In the reverse formatted SART, since bias was not expected to be lenient, we expected no impact or minimal impact of a response delay on response bias. These predictions were verified. Response bias is more critical in understanding SART performance, than perceptual decoupling, which is rare if it occurs at all in the SART.
研究人员对高 Go、低 No Go 目标检测任务(如持续注意反应任务[SART])中错误的原因存在争议。一些研究人员提出,SART 中的错误是由于感知解耦造成的,即参与者无法意识到刺激的身份。这种缺乏外部意识会导致错误的反应。其他研究人员则认为,SART 中的大多数错误是由于反应宽松,而不是感知解耦造成的。反应延迟可能使最初无法意识到刺激身份、感知解耦的参与者能够意识到刺激身份或感知重新耦合。然而,如果将刺激呈现时间缩短到识别刺激所需的最短时间,并使用结构化掩蔽物干扰刺激,则即使存在反应延迟,也没有时间使感知重新耦合。从感知解耦的角度来看,在这种情况下,反应延迟不应影响性能。或者,如果反应偏差至关重要,那么即使在这种情况下,反应延迟也可能会影响性能。在这项研究中,我们缩短了刺激呈现时间并添加了结构化掩蔽物。我们检查了反应延迟是否会影响 SART 以及 SART 响应格式反转的任务中的表现。我们预计反应延迟只会影响 SART 中的信号检测理论偏差 c,因为在这种情况下存在反应宽松的问题。在反转格式的 SART 中,由于预计偏差不会宽松,我们预计反应延迟对反应偏差没有影响或只有最小的影响。这些预测得到了验证。反应偏差在理解 SART 性能方面比感知解耦更为关键,如果感知解耦在 SART 中确实存在,那也是罕见的。