Nakamura Shingo, Pourkheirandish Mohammad, Morishige Hiromi, Kubo Yuta, Nakamura Masako, Ichimura Kazuya, Seo Shigemi, Kanamori Hiroyuki, Wu Jianzhong, Ando Tsuyu, Hensel Goetz, Sameri Mohammad, Stein Nils, Sato Kazuhiro, Matsumoto Takashi, Yano Masahiro, Komatsuda Takao
NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan.
NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan.
Curr Biol. 2016 Mar 21;26(6):775-81. doi: 10.1016/j.cub.2016.01.024. Epub 2016 Mar 3.
Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat.
种子休眠在植物生存和作物生产中具有至关重要的意义;然而,调节休眠的机制仍不清楚[1-3]。在驯化过程中,种子休眠水平通常会降低,以确保作物能在田间成功发芽。然而,种子休眠的降低会导致小麦(Triticum aestivum L.)和大麦(Hordeum vulgare L.)等谷类作物因收获前发芽而遭受毁灭性损失,收获前发芽是指在收获前下雨时,母株上成熟种子(谷粒)的萌发。了解休眠机制有助于培育具有适当种子休眠水平的作物品种[4-8]。大麦是一种模式作物[9, 10],在5H染色体上有两个主要的种子休眠数量性状位点(QTLs),即SD1和SD2[11-19]。我们在SD2位点检测到一个名为Qsd2-AK的QTL,它是解释休眠品种“Azumamugi”(Az)和非休眠品种“Kanto Nakate Gold”(KNG)之间种子休眠差异的单一主要决定因素。通过图位克隆,我们确定Qsd2-AK的因果基因是丝裂原活化蛋白激酶激酶3(MKK3)。MKK3的休眠Az等位基因是隐性的;该等位基因中的N260T替换降低了MKK3激酶活性,似乎是Qsd2-AK的原因。N260T替换发生在休眠等位基因的直接祖先等位基因中,并且已确立的休眠等位基因在东亚种植的大麦品种中很普遍,在东亚,雨季和收获季节经常重叠。我们的研究结果显示了驯化过程中种子休眠的微调,并为提高大麦和小麦收获前发芽耐受性提供了关键信息。