Zheng Lianjun, Polizzi Nicholas F, Dave Adarsh R, Migliore Agostino, Beratan David N
Department of Chemistry, ‡Department of Biochemistry, and §Department of Physics, Duke University , Durham, North Carolina 27708, United States.
J Phys Chem A. 2016 Mar 24;120(11):1933-43. doi: 10.1021/acs.jpca.6b00692. Epub 2016 Mar 15.
The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
太阳能捕获与转换材料的有效性源于其吸收光并将激发能转化为自由载流子或化学键中储存的能量的能力。托马斯 - 赖歇 - 库恩(TRK)求和规则规定,吸收体的积分(电子)振子强度等于结构中的电子总数。典型的分子发色团仅将其约1%的振子强度置于紫外 - 可见窗口,因此单个发色团的运行效率仅为其理论极限的约1%。我们探索振子强度随激发能的分布情况以理解这一现象。为此,我们使用了常见的独立电子模型哈密顿量以及第一性原理电子结构方法。虽然模型哈密顿量能够捕捉与π电子发色团相关的定性电子光谱,但这些哈密顿量错误地将振子强度集中在最少的低能跃迁上。相比之下,先进的电子结构方法将振子强度分布在非常宽的激发能范围内,包括向里德堡态和连续态的跃迁,这与实验结果一致。我们的分析解释了分子在紫外 - 可见光谱区域振子强度较低的原因,朝着振子强度操纵和聚焦的目标迈进了一步。