Suppr超能文献

电子振子强度在哪里?绘制分子吸收光谱中的振子强度分布图。

Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

作者信息

Zheng Lianjun, Polizzi Nicholas F, Dave Adarsh R, Migliore Agostino, Beratan David N

机构信息

Department of Chemistry, ‡Department of Biochemistry, and §Department of Physics, Duke University , Durham, North Carolina 27708, United States.

出版信息

J Phys Chem A. 2016 Mar 24;120(11):1933-43. doi: 10.1021/acs.jpca.6b00692. Epub 2016 Mar 15.

Abstract

The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

摘要

太阳能捕获与转换材料的有效性源于其吸收光并将激发能转化为自由载流子或化学键中储存的能量的能力。托马斯 - 赖歇 - 库恩(TRK)求和规则规定,吸收体的积分(电子)振子强度等于结构中的电子总数。典型的分子发色团仅将其约1%的振子强度置于紫外 - 可见窗口,因此单个发色团的运行效率仅为其理论极限的约1%。我们探索振子强度随激发能的分布情况以理解这一现象。为此,我们使用了常见的独立电子模型哈密顿量以及第一性原理电子结构方法。虽然模型哈密顿量能够捕捉与π电子发色团相关的定性电子光谱,但这些哈密顿量错误地将振子强度集中在最少的低能跃迁上。相比之下,先进的电子结构方法将振子强度分布在非常宽的激发能范围内,包括向里德堡态和连续态的跃迁,这与实验结果一致。我们的分析解释了分子在紫外 - 可见光谱区域振子强度较低的原因,朝着振子强度操纵和聚焦的目标迈进了一步。

相似文献

2
Excitons and Polarons in Organic Materials.有机材料中的激子与极化子。
Acc Chem Res. 2020 Oct 20;53(10):2201-2211. doi: 10.1021/acs.accounts.0c00349. Epub 2020 Oct 9.
3
Electrostatic Field-Induced Oscillator Strength Focusing in Molecules.静电场诱导分子中的振子强度聚焦。
J Phys Chem B. 2020 Jul 23;124(29):6376-6388. doi: 10.1021/acs.jpcb.0c04783. Epub 2020 Jul 15.
4
Visible and ultraviolet spectroscopy of gas phase protein ions.气相蛋白离子的可见和紫外光谱。
Phys Chem Chem Phys. 2011 Oct 6;13(37):16494-509. doi: 10.1039/c1cp21531k. Epub 2011 Aug 2.
9
Solar fuels via artificial photosynthesis.通过人工光合作用生产太阳能燃料。
Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.

本文引用的文献

1
Nanocavity enhancement for ultra-thin film optical absorber.用于超薄薄膜光吸收体的纳米腔增强。
Adv Mater. 2014 May;26(17):2737-43, 2617. doi: 10.1002/adma.201305793. Epub 2014 Feb 24.
6
Porphyrin-sensitized solar cells.卟啉敏化太阳能电池。
Chem Soc Rev. 2013 Jan 7;42(1):291-304. doi: 10.1039/c2cs35257e. Epub 2012 Oct 1.
7
Progress in time-dependent density-functional theory.含时密度泛函理论的进展
Annu Rev Phys Chem. 2012;63:287-323. doi: 10.1146/annurev-physchem-032511-143803. Epub 2012 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验