Michaelsen-Preusse Kristin, Zessin Sabine, Grigoryan Gayane, Scharkowski Franziska, Feuge Jonas, Remus Anita, Korte Martin
Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, D-38106 Braunschweig, Germany;
Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, D-38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, AG Neuroinflammation and Neurodegeneration, 38124 Braunschweig, Germany.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3365-70. doi: 10.1073/pnas.1516697113. Epub 2016 Mar 7.
Learning and memory, to a large extent, depend on functional changes at synapses. Actin dynamics orchestrate the formation of synapses, as well as their stabilization, and the ability to undergo plastic changes. Hence, profilins are of key interest as they bind to G-actin and enhance actin polymerization. However, profilins also compete with actin nucleators, thereby restricting filament formation. Here, we provide evidence that the two brain isoforms, profilin1 (PFN1) and PFN2a, regulate spine actin dynamics in an opposing fashion, and that whereas both profilins are needed during synaptogenesis, only PFN2a is crucial for adult spine plasticity. This finding suggests that PFN1 is the juvenile isoform important during development, whereas PFN2a is mandatory for spine stability and plasticity in mature neurons. In line with this finding, only PFN1 levels are altered in the mouse model of the developmental neurological disorder Fragile X syndrome. This finding is of high relevance because Fragile X syndrome is the most common monogenetic cause for autism spectrum disorder. Indeed, the expression of recombinant profilins rescued the impairment in spinogenesis, a hallmark in Fragile X syndrome, thereby linking the regulation of actin dynamics to synapse development and possible dysfunction.
学习和记忆在很大程度上依赖于突触处的功能变化。肌动蛋白动力学调控着突触的形成、稳定以及发生可塑性变化的能力。因此,由于抑制蛋白能与球状肌动蛋白结合并增强肌动蛋白聚合作用,它们备受关注。然而,抑制蛋白也会与肌动蛋白成核剂竞争,从而限制细丝形成。在此,我们提供证据表明,两种脑异构体,即抑制蛋白1(PFN1)和PFN2a,以相反的方式调节棘突肌动蛋白动力学,并且在突触形成过程中两种抑制蛋白都需要,但只有PFN2a对成年棘突可塑性至关重要。这一发现表明,PFN1是发育过程中重要的幼年异构体,而PFN2a对成熟神经元中棘突的稳定性和可塑性是必不可少的。与这一发现一致,在发育性神经疾病脆性X综合征的小鼠模型中,只有PFN1水平发生了改变。这一发现具有高度相关性,因为脆性X综合征是自闭症谱系障碍最常见的单基因病因。实际上,重组抑制蛋白的表达挽救了脆性X综合征的一个标志性特征——棘突发生障碍,从而将肌动蛋白动力学的调控与突触发育及可能的功能障碍联系起来。