Suppr超能文献

自适应投影本征变换多变量经验模态分解在协同脑机接口应用中的研究

Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

作者信息

Hemakom Apit, Goverdovsky Valentin, Looney David, Mandic Danilo P

机构信息

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150199. doi: 10.1098/rsta.2015.0199.

Abstract

An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate.

摘要

提出了一种多元经验模态分解(MEMD)的扩展方法,称为自适应投影本征变换MEMD(APIT-MEMD),以适应现实世界多通道数据中的功率不平衡和通道间相关性。结果表明,对于大量投影向量,APIT-MEMD表现出与MEMD相似或更好的性能,而在筛选算法中投影向量数量较少的关键情况下,它优于MEMD。我们还在提出的本征多尺度分析框架内采用了噪声辅助APIT-MEMD,并基于稳态视觉诱发电位和P300反应,说明了这种方法在以噪声为主的协作式脑机接口(BCI)中的优势。最后,我们表明,对于联合认知BCI任务,所提出的本征多尺度分析框架在信息传输率方面提高了系统性能。

相似文献

6
Classification of motor imagery BCI using multivariate empirical mode decomposition.使用多元经验模态分解对运动想象脑-机接口进行分类。
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):10-22. doi: 10.1109/TNSRE.2012.2229296. Epub 2012 Nov 27.

引用本文的文献

7
Adaptive data analysis: theory and applications.自适应数据分析:理论与应用
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150207. doi: 10.1098/rsta.2015.0207.

本文引用的文献

6
Classification of motor imagery BCI using multivariate empirical mode decomposition.使用多元经验模态分解对运动想象脑-机接口进行分类。
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):10-22. doi: 10.1109/TNSRE.2012.2229296. Epub 2012 Nov 27.
7
A telepresence mobile robot controlled with a noninvasive brain-computer interface.一种由无创脑机接口控制的远程临场移动机器人。
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):793-804. doi: 10.1109/TSMCB.2011.2177968. Epub 2011 Dec 14.
9
Frequency and phase mixed coding in SSVEP-based brain--computer interface.基于 SSVEP 的脑-机接口中的频率与相位混合编码。
IEEE Trans Biomed Eng. 2011 Jan;58(1):200-6. doi: 10.1109/TBME.2010.2068571. Epub 2010 Aug 19.
10
Single trial P300 detection based on the Empirical Mode Decomposition.基于经验模态分解的单次试验P300检测。
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1157-60. doi: 10.1109/IEMBS.2006.260589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验