Youssef Khalid, Jarenwattananon Nanette N, Archer Brian J, Mack Julia, Iruela-Arispe M Luisa, Bouchard Louis-S
IEEE Trans Biomed Eng. 2017 Jan;64(1):61-69. doi: 10.1109/TBME.2016.2537266. Epub 2016 Mar 2.
Tissue engineering (TE) approaches that involve seeding cells into predetermined tissue scaffolds ignore the complex environment where the material properties are spatially inhomogeneous and evolve over time. We present a new approach for controlling mechanical forces inside bioreactors, which enables spatiotemporal control of flow fields in real time. Our adaptive approach offers the flexibility of dialing-in arbitrary shear stress distributions and adjusting flow field patterns in a scaffold over time in response to cell growth without needing to alter scaffold structure. This is achieved with a multi-inlet bioreactor and a control algorithm with learning capabilities to dynamically solve the inverse problem of computing the inlet pressure distribution required over the multiple inlets to obtain a target flow field. The new method constitutes a new platform for studies of cellular responses to mechanical forces in complex environments and opens potentially transformative possibilities for TE.
将细胞接种到预先确定的组织支架中的组织工程(TE)方法忽略了这样一个复杂环境,即材料特性在空间上是不均匀的,并且会随时间演变。我们提出了一种控制生物反应器内部机械力的新方法,该方法能够实时对流场进行时空控制。我们的自适应方法提供了灵活性,可以输入任意的剪切应力分布,并随着时间的推移根据细胞生长情况调整支架中的流场模式,而无需改变支架结构。这是通过一个多入口生物反应器和一种具有学习能力的控制算法来实现的,该算法能够动态求解逆问题,即计算多个入口上所需的入口压力分布,以获得目标流场。这种新方法构成了一个用于研究复杂环境中细胞对机械力反应的新平台,并为组织工程开启了潜在的变革性可能性。