Suppr超能文献

采用径向基函数人工神经网络对处理城市和工业混合废水的淹没式膜生物反应器进行性能评估和建模。

Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks.

机构信息

Department of Civil Engineering, K.N. Toosi University of Technology, Vanak square, Tehran, Iran.

Department and Faculty of Basic Sciences, PUK University, Kermanshah, Iran.

出版信息

J Environ Health Sci Eng. 2015 Mar 13;13:17. doi: 10.1186/s40201-015-0172-4. eCollection 2015.

Abstract

Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR) treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and industrial wastewaters. The BOD, COD, [Formula: see text] and total phosphorous (TP) removal efficiencies for combined wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L, respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the RBFANN models were successful for all predicted components. The train and test models showed an almost perfect match between the experimental and predicted values of effluent BOD, COD, [Formula: see text] and TP. The coefficient of determination (R(2)) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for train and test models.

摘要

处理过程模型是确保废水处理系统正常运行和更好控制的有效工具。本研究旨在评估处理市政和工业混合废水的浸没式膜生物反应器(SMBR)的性能,并使用径向基函数人工神经网络(RBFANN)模拟 SMBR 的出水质量参数。结果表明,与市政和工业废水相比,混合废水的处理效率提高,水力停留时间(HRT)降低。在 HRT 为 7 小时的条件下,混合废水中的 BOD、COD、[Formula: see text]和总磷(TP)去除效率分别为 96.9%、96%、96.7%和 92%。作为处理废水的理想标准,TBOD/TP 比增加,BOD 和 COD 浓度分别降低至 700 和 1000mg/L,BOD/COD 比约为 0.5。RBFANN 模型的训练程序适用于所有预测成分。训练和测试模型在实验和预测值之间显示出极好的匹配,出水 BOD、COD、[Formula: see text]和 TP 的决定系数(R²)值均高于 0.98,且训练和测试模型的均方根误差(RMSE)值均不超过 7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3db8/4367972/235fb3b271cf/40201_2015_172_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验